Cargando…
Prediction of Bioluminescent Proteins Using Auto Covariance Transformation of Evolutional Profiles
Bioluminescent proteins are important for various cellular processes, such as gene expression analysis, drug discovery, bioluminescent imaging, toxicity determination, and DNA sequencing studies. Hence, the correct identification of bioluminescent proteins is of great importance both for helping gen...
Autores principales: | Zhao, Xiaowei, Li, Jiakui, Huang, Yanxin, Ma, Zhiqiang, Yin, Minghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317733/ https://www.ncbi.nlm.nih.gov/pubmed/22489173 http://dx.doi.org/10.3390/ijms13033650 |
Ejemplares similares
-
Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences
por: Zhao, Xiaowei, et al.
Publicado: (2012) -
Predicting Endoplasmic Reticulum Resident Proteins Using Auto-Cross Covariance Transformation With a U-Shaped Residue Weight-Transfer Function
por: Miao, Yang-Yang, et al.
Publicado: (2019) -
Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences
por: Guo, Yanzhi, et al.
Publicado: (2008) -
Prediction of Protein Phosphorylation Sites by Using the Composition of k-Spaced Amino Acid Pairs
por: Zhao, Xiaowei, et al.
Publicado: (2012) -
Prediction of bioluminescent proteins by using sequence-derived features and lineage-specific scheme
por: Zhang, Jian, et al.
Publicado: (2017)