Cargando…
RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer
PURPOSE: Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of rec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317991/ https://www.ncbi.nlm.nih.gov/pubmed/22509328 http://dx.doi.org/10.1371/journal.pone.0034582 |
_version_ | 1782228658291736576 |
---|---|
author | Leake, Kathryn Singhal, Jyotsana Nagaprashantha, Lokesh Dalasanur Awasthi, Sanjay Singhal, Sharad S. |
author_facet | Leake, Kathryn Singhal, Jyotsana Nagaprashantha, Lokesh Dalasanur Awasthi, Sanjay Singhal, Sharad S. |
author_sort | Leake, Kathryn |
collection | PubMed |
description | PURPOSE: Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. RESEARCH DESIGN AND METHODS: Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. RESULTS: Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers. |
format | Online Article Text |
id | pubmed-3317991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33179912012-04-16 RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer Leake, Kathryn Singhal, Jyotsana Nagaprashantha, Lokesh Dalasanur Awasthi, Sanjay Singhal, Sharad S. PLoS One Research Article PURPOSE: Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. RESEARCH DESIGN AND METHODS: Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. RESULTS: Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers. Public Library of Science 2012-04-03 /pmc/articles/PMC3317991/ /pubmed/22509328 http://dx.doi.org/10.1371/journal.pone.0034582 Text en Leake et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Leake, Kathryn Singhal, Jyotsana Nagaprashantha, Lokesh Dalasanur Awasthi, Sanjay Singhal, Sharad S. RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title | RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title_full | RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title_fullStr | RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title_full_unstemmed | RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title_short | RLIP76 Regulates PI3K/Akt Signaling and Chemo-Radiotherapy Resistance in Pancreatic Cancer |
title_sort | rlip76 regulates pi3k/akt signaling and chemo-radiotherapy resistance in pancreatic cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317991/ https://www.ncbi.nlm.nih.gov/pubmed/22509328 http://dx.doi.org/10.1371/journal.pone.0034582 |
work_keys_str_mv | AT leakekathryn rlip76regulatespi3kaktsignalingandchemoradiotherapyresistanceinpancreaticcancer AT singhaljyotsana rlip76regulatespi3kaktsignalingandchemoradiotherapyresistanceinpancreaticcancer AT nagaprashanthalokeshdalasanur rlip76regulatespi3kaktsignalingandchemoradiotherapyresistanceinpancreaticcancer AT awasthisanjay rlip76regulatespi3kaktsignalingandchemoradiotherapyresistanceinpancreaticcancer AT singhalsharads rlip76regulatespi3kaktsignalingandchemoradiotherapyresistanceinpancreaticcancer |