Cargando…
Response Errors Explain the Failure of Independent-Channels Models of Perception of Temporal Order
Independent-channels models of perception of temporal order (also referred to as threshold models or perceptual latency models) have been ruled out because two formal properties of these models (monotonicity and parallelism) are not borne out by data from ternary tasks in which observers must judge...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318233/ https://www.ncbi.nlm.nih.gov/pubmed/22493586 http://dx.doi.org/10.3389/fpsyg.2012.00094 |
Sumario: | Independent-channels models of perception of temporal order (also referred to as threshold models or perceptual latency models) have been ruled out because two formal properties of these models (monotonicity and parallelism) are not borne out by data from ternary tasks in which observers must judge whether stimulus A was presented before, after, or simultaneously with stimulus B. These models generally assume that observed responses are authentic indicators of unobservable judgments, but blinks, lapses of attention, or errors in pressing the response keys (maybe, but not only, motivated by time pressure when reaction times are being recorded) may make observers misreport their judgments or simply guess a response. We present an extension of independent-channels models that considers response errors and we show that the model produces psychometric functions that do not satisfy monotonicity and parallelism. The model is illustrated by fitting it to data from a published study in which the ternary task was used. The fitted functions describe very accurately the absence of monotonicity and parallelism shown by the data. These characteristics of empirical data are thus consistent with independent-channels models when response errors are taken into consideration. The implications of these results for the analysis and interpretation of temporal order judgment data are discussed. |
---|