Cargando…
LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders
Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in sala...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318908/ https://www.ncbi.nlm.nih.gov/pubmed/22200636 http://dx.doi.org/10.1093/gbe/evr139 |
_version_ | 1782228712945614848 |
---|---|
author | Sun, Cheng Shepard, Donald B. Chong, Rebecca A. López Arriaza, José Hall, Kathryn Castoe, Todd A. Feschotte, Cédric Pollock, David D. Mueller, Rachel Lockridge |
author_facet | Sun, Cheng Shepard, Donald B. Chong, Rebecca A. López Arriaza, José Hall, Kathryn Castoe, Todd A. Feschotte, Cédric Pollock, David D. Mueller, Rachel Lockridge |
author_sort | Sun, Cheng |
collection | PubMed |
description | Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders. |
format | Online Article Text |
id | pubmed-3318908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33189082012-04-04 LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders Sun, Cheng Shepard, Donald B. Chong, Rebecca A. López Arriaza, José Hall, Kathryn Castoe, Todd A. Feschotte, Cédric Pollock, David D. Mueller, Rachel Lockridge Genome Biol Evol Research Articles Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ∼14 to ∼120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders. Oxford University Press 2012 2011-12-26 /pmc/articles/PMC3318908/ /pubmed/22200636 http://dx.doi.org/10.1093/gbe/evr139 Text en © The Author(s) 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Sun, Cheng Shepard, Donald B. Chong, Rebecca A. López Arriaza, José Hall, Kathryn Castoe, Todd A. Feschotte, Cédric Pollock, David D. Mueller, Rachel Lockridge LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title_full | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title_fullStr | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title_full_unstemmed | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title_short | LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders |
title_sort | ltr retrotransposons contribute to genomic gigantism in plethodontid salamanders |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318908/ https://www.ncbi.nlm.nih.gov/pubmed/22200636 http://dx.doi.org/10.1093/gbe/evr139 |
work_keys_str_mv | AT suncheng ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT sheparddonaldb ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT chongrebeccaa ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT lopezarriazajose ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT hallkathryn ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT castoetodda ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT feschottecedric ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT pollockdavidd ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders AT muellerrachellockridge ltrretrotransposonscontributetogenomicgigantisminplethodontidsalamanders |