Cargando…
A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI
This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datase...
Autores principales: | Kindermans, Pieter-Jan, Verstraeten, David, Schrauwen, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319551/ https://www.ncbi.nlm.nih.gov/pubmed/22496763 http://dx.doi.org/10.1371/journal.pone.0033758 |
Ejemplares similares
-
The MindGomoku: An Online P300 BCI Game Based on Bayesian Deep Learning
por: Li, Man, et al.
Publicado: (2021) -
Identifying potential training factors in a vibrotactile P300-BCI
por: Eidel, M., et al.
Publicado: (2022) -
Empathy, motivation, and P300 BCI performance
por: Kleih, Sonja C., et al.
Publicado: (2013) -
The cost of space independence in P300-BCI spellers
por: Chennu, Srivas, et al.
Publicado: (2013) -
Effects of Visual Attention on Tactile P300 BCI
por: Chen, Zongmei, et al.
Publicado: (2020)