Cargando…
Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers
BACKGROUND: In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically gathered in preclinical or clinical studies. In particular, the discovery of bioma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320562/ https://www.ncbi.nlm.nih.gov/pubmed/22182709 http://dx.doi.org/10.1186/2043-9113-1-34 |
_version_ | 1782228858499497984 |
---|---|
author | Netzer, Michael Weinberger, Klaus M Handler, Michael Seger, Michael Fang, Xiaocong Kugler, Karl G Graber, Armin Baumgartner, Christian |
author_facet | Netzer, Michael Weinberger, Klaus M Handler, Michael Seger, Michael Fang, Xiaocong Kugler, Karl G Graber, Armin Baumgartner, Christian |
author_sort | Netzer, Michael |
collection | PubMed |
description | BACKGROUND: In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically gathered in preclinical or clinical studies. In particular, the discovery of biomarker candidates from longitudinal cohort studies is crucial for kinetic analysis to better understand complex metabolic processes in the organism during physical activity. FINDINGS: In this work we introduce a novel computational strategy that allows to identify and study kinetic changes of putative biomarkers using targeted MS/MS profiling data from time series cohort studies or other cross-over designs. We propose a prioritization model with the objective of classifying biomarker candidates according to their discriminatory ability and couple this discovery step with a novel network-based approach to visualize, review and interpret key metabolites and their dynamic interactions within the network. The application of our method on longitudinal stress test data revealed a panel of metabolic signatures, i.e., lactate, alanine, glycine and the short-chain fatty acids C2 and C3 in trained and physically fit persons during bicycle exercise. CONCLUSIONS: We propose a new computational method for the discovery of new signatures in dynamic metabolic profiling data which revealed known and unexpected candidate biomarkers in physical activity. Many of them could be verified and confirmed by literature. Our computational approach is freely available as R package termed BiomarkeR under LGPL via CRAN http://cran.r-project.org/web/packages/BiomarkeR/. |
format | Online Article Text |
id | pubmed-3320562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33205622012-04-16 Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers Netzer, Michael Weinberger, Klaus M Handler, Michael Seger, Michael Fang, Xiaocong Kugler, Karl G Graber, Armin Baumgartner, Christian J Clin Bioinforma Short Report BACKGROUND: In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically gathered in preclinical or clinical studies. In particular, the discovery of biomarker candidates from longitudinal cohort studies is crucial for kinetic analysis to better understand complex metabolic processes in the organism during physical activity. FINDINGS: In this work we introduce a novel computational strategy that allows to identify and study kinetic changes of putative biomarkers using targeted MS/MS profiling data from time series cohort studies or other cross-over designs. We propose a prioritization model with the objective of classifying biomarker candidates according to their discriminatory ability and couple this discovery step with a novel network-based approach to visualize, review and interpret key metabolites and their dynamic interactions within the network. The application of our method on longitudinal stress test data revealed a panel of metabolic signatures, i.e., lactate, alanine, glycine and the short-chain fatty acids C2 and C3 in trained and physically fit persons during bicycle exercise. CONCLUSIONS: We propose a new computational method for the discovery of new signatures in dynamic metabolic profiling data which revealed known and unexpected candidate biomarkers in physical activity. Many of them could be verified and confirmed by literature. Our computational approach is freely available as R package termed BiomarkeR under LGPL via CRAN http://cran.r-project.org/web/packages/BiomarkeR/. BioMed Central 2011-12-19 /pmc/articles/PMC3320562/ /pubmed/22182709 http://dx.doi.org/10.1186/2043-9113-1-34 Text en Copyright ©2011 Netzer et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Netzer, Michael Weinberger, Klaus M Handler, Michael Seger, Michael Fang, Xiaocong Kugler, Karl G Graber, Armin Baumgartner, Christian Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title | Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title_full | Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title_fullStr | Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title_full_unstemmed | Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title_short | Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
title_sort | profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320562/ https://www.ncbi.nlm.nih.gov/pubmed/22182709 http://dx.doi.org/10.1186/2043-9113-1-34 |
work_keys_str_mv | AT netzermichael profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT weinbergerklausm profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT handlermichael profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT segermichael profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT fangxiaocong profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT kuglerkarlg profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT graberarmin profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers AT baumgartnerchristian profilingthehumanresponsetophysicalexerciseacomputationalstrategyfortheidentificationandkineticanalysisofmetabolicbiomarkers |