Cargando…

Interactions between Multiple Recruitment Drivers: Post-Settlement Predation Mortality and Flow-Mediated Recruitment

BACKGROUND: Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple s...

Descripción completa

Detalles Bibliográficos
Autores principales: Knights, Antony M., Firth, Louise B., Walters, Keith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320868/
https://www.ncbi.nlm.nih.gov/pubmed/22493734
http://dx.doi.org/10.1371/journal.pone.0035096
Descripción
Sumario:BACKGROUND: Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple supply from recruitment. The effect of flow-mediated recruitment and predation on the recruitment success of an intertidal species, the eastern oyster Crassostrea virginica was evaluated in two-replicated field experiments. Two key crab species were manipulated to test predator identity effects on oyster mortality. FINDINGS: Recruitment was ∼58% higher in high flow compared to low flow, but predation masked those differences. Predation mortality was primarily attributed to the blue crab Callinectes sapidus, whilst the mud crab Panopeus herbstii had no effect on recruit mortality. Recruit mortality from predation was high when recruit densities were high, but when recruit density was low, predation effects were not seen. Under high recruitment (supply), predation determined maximum population size and in low flow environments, recruitment success is likely determined by a combination of recruitment and resource limitation but not predation. CONCLUSIONS: Four processes are demonstrated: (1) Increases in flow rate positively affect recruitment success; (2) In high flow (recruitment) environments, resource availability is less important than predation; (3) predation is an important source of recruit mortality, but is dependent upon recruit density; and (4) recruitment and/or resource limitation is likely a major driver of population structure and functioning, modifying the interaction between predators and prey. Simultaneous testing of flow-mediated recruitment and predation was required to differentiate between the role of each process in determining population size. Our results reinforce the importance of propagule pressure, predation and post-settlement mortality as important determinants of population growth and persistence, but demonstrate that they should not be considered mutually exclusive.