Cargando…

Immunoinformatic evaluation of multiple epitope ensembles as vaccine candidates: E coli 536

Epitope prediction is becoming a key tool for vaccine discovery. Prospective analysis of bacterial and viral genomes can identify antigenic epitopes encoded within individual genes that may act as effective vaccines against specific pathogens. Since B-cell epitope prediction remains unreliable, we c...

Descripción completa

Detalles Bibliográficos
Autores principales: Rai, Jade, Lok, Ka In, Mok, Chun Yin, Mann, Harvinder, Noor, Mohammed, Patel, Pritesh, Flower, Darren R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321237/
https://www.ncbi.nlm.nih.gov/pubmed/22493535
http://dx.doi.org/10.6026/97320630008272
Descripción
Sumario:Epitope prediction is becoming a key tool for vaccine discovery. Prospective analysis of bacterial and viral genomes can identify antigenic epitopes encoded within individual genes that may act as effective vaccines against specific pathogens. Since B-cell epitope prediction remains unreliable, we concentrate on T-cell epitopes, peptides which bind with high affinity to Major Histacompatibility Complexes (MHC). In this report, we evaluate the veracity of identified T-cell epitope ensembles, as generated by a cascade of predictive algorithms (SignalP, Vaxijen, MHCPred, IDEB, EpiJen), as a candidate vaccine against the model pathogen uropathogenic gram negative bacteria Escherichia coli (E-coli) strain 536 (O6:K15:H31). An immunoinformatic approach was used to identify 23 epitopes within the E-coli proteome. These epitopes constitute the most promiscuous antigenic sequences that bind across more than one HLA allele with high affinity (IC50 < 50nM). The reliability of software programmes used, polymorphic nature of genes encoding MHC and what this means for population coverage of this potential vaccine are discussed.