Cargando…
Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for ne...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321538/ https://www.ncbi.nlm.nih.gov/pubmed/22545059 http://dx.doi.org/10.1155/2012/628293 |
_version_ | 1782228957617192960 |
---|---|
author | Shaler, Christopher R. Horvath, Carly Lai, Rocky Xing, Zhou |
author_facet | Shaler, Christopher R. Horvath, Carly Lai, Rocky Xing, Zhou |
author_sort | Shaler, Christopher R. |
collection | PubMed |
description | Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB. |
format | Online Article Text |
id | pubmed-3321538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33215382012-04-27 Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis Shaler, Christopher R. Horvath, Carly Lai, Rocky Xing, Zhou Clin Dev Immunol Review Article Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB. Hindawi Publishing Corporation 2012 2012-04-01 /pmc/articles/PMC3321538/ /pubmed/22545059 http://dx.doi.org/10.1155/2012/628293 Text en Copyright © 2012 Christopher R. Shaler et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Shaler, Christopher R. Horvath, Carly Lai, Rocky Xing, Zhou Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title | Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title_full | Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title_fullStr | Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title_full_unstemmed | Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title_short | Understanding Delayed T-Cell Priming, Lung Recruitment, and Airway Luminal T-Cell Responses in Host Defense against Pulmonary Tuberculosis |
title_sort | understanding delayed t-cell priming, lung recruitment, and airway luminal t-cell responses in host defense against pulmonary tuberculosis |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321538/ https://www.ncbi.nlm.nih.gov/pubmed/22545059 http://dx.doi.org/10.1155/2012/628293 |
work_keys_str_mv | AT shalerchristopherr understandingdelayedtcellpriminglungrecruitmentandairwayluminaltcellresponsesinhostdefenseagainstpulmonarytuberculosis AT horvathcarly understandingdelayedtcellpriminglungrecruitmentandairwayluminaltcellresponsesinhostdefenseagainstpulmonarytuberculosis AT lairocky understandingdelayedtcellpriminglungrecruitmentandairwayluminaltcellresponsesinhostdefenseagainstpulmonarytuberculosis AT xingzhou understandingdelayedtcellpriminglungrecruitmentandairwayluminaltcellresponsesinhostdefenseagainstpulmonarytuberculosis |