Cargando…

Landscape Encodings Enhance Optimization

Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invert...

Descripción completa

Detalles Bibliográficos
Autores principales: Klemm, Konstantin, Mehta, Anita, Stadler, Peter F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322142/
https://www.ncbi.nlm.nih.gov/pubmed/22496860
http://dx.doi.org/10.1371/journal.pone.0034780
Descripción
Sumario:Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.