Cargando…

Landscape Encodings Enhance Optimization

Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invert...

Descripción completa

Detalles Bibliográficos
Autores principales: Klemm, Konstantin, Mehta, Anita, Stadler, Peter F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322142/
https://www.ncbi.nlm.nih.gov/pubmed/22496860
http://dx.doi.org/10.1371/journal.pone.0034780
_version_ 1782229036293947392
author Klemm, Konstantin
Mehta, Anita
Stadler, Peter F.
author_facet Klemm, Konstantin
Mehta, Anita
Stadler, Peter F.
author_sort Klemm, Konstantin
collection PubMed
description Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.
format Online
Article
Text
id pubmed-3322142
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33221422012-04-11 Landscape Encodings Enhance Optimization Klemm, Konstantin Mehta, Anita Stadler, Peter F. PLoS One Research Article Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. Public Library of Science 2012-04-09 /pmc/articles/PMC3322142/ /pubmed/22496860 http://dx.doi.org/10.1371/journal.pone.0034780 Text en Klemm et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Klemm, Konstantin
Mehta, Anita
Stadler, Peter F.
Landscape Encodings Enhance Optimization
title Landscape Encodings Enhance Optimization
title_full Landscape Encodings Enhance Optimization
title_fullStr Landscape Encodings Enhance Optimization
title_full_unstemmed Landscape Encodings Enhance Optimization
title_short Landscape Encodings Enhance Optimization
title_sort landscape encodings enhance optimization
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322142/
https://www.ncbi.nlm.nih.gov/pubmed/22496860
http://dx.doi.org/10.1371/journal.pone.0034780
work_keys_str_mv AT klemmkonstantin landscapeencodingsenhanceoptimization
AT mehtaanita landscapeencodingsenhanceoptimization
AT stadlerpeterf landscapeencodingsenhanceoptimization