Cargando…
Computational Comparative Study of Tuberculosis Proteomes Using a Model Learned from Signal Peptide Structures
Secretome analysis is important in pathogen studies. A fundamental and convenient way to identify secreted proteins is to first predict signal peptides, which are essential for protein secretion. However, signal peptides are highly complex functional sequences that are easily confused with transmemb...
Autores principales: | Lai, Jhih-Siang, Cheng, Cheng-Wei, Sung, Ting-Yi, Hsu, Wen-Lian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322152/ https://www.ncbi.nlm.nih.gov/pubmed/22496884 http://dx.doi.org/10.1371/journal.pone.0035018 |
Ejemplares similares
-
Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices
por: Lai, Jhih-Siang, et al.
Publicado: (2013) -
TMPad: an integrated structural database for helix-packing folds in transmembrane proteins
por: Lo, Allan, et al.
Publicado: (2011) -
Structural Annotation of Mycobacterium tuberculosis Proteome
por: Anand, Praveen, et al.
Publicado: (2011) -
dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data
por: Jhong, Jhih-Hua, et al.
Publicado: (2019) -
Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing
por: Su, Emily Chia-Yu, et al.
Publicado: (2012)