Cargando…
PDB_REDO: constructive validation, more than just looking for errors
Developments of the PDB_REDO procedure that combine re-refinement and rebuilding within a unique decision-making framework to improve structures in the PDB are presented. PDB_REDO uses a variety of existing and custom-built software modules to choose an optimal refinement protocol (e.g. anisotropic,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322608/ https://www.ncbi.nlm.nih.gov/pubmed/22505269 http://dx.doi.org/10.1107/S0907444911054515 |
Sumario: | Developments of the PDB_REDO procedure that combine re-refinement and rebuilding within a unique decision-making framework to improve structures in the PDB are presented. PDB_REDO uses a variety of existing and custom-built software modules to choose an optimal refinement protocol (e.g. anisotropic, isotropic or overall B-factor refinement, TLS model) and to optimize the geometry versus data-refinement weights. Next, it proceeds to rebuild side chains and peptide planes before a final optimization round. PDB_REDO works fully automatically without the need for intervention by a crystallographic expert. The pipeline was tested on 12 000 PDB entries and the great majority of the test cases improved both in terms of crystallographic criteria such as R (free) and in terms of widely accepted geometric validation criteria. It is concluded that PDB_REDO is useful to update the otherwise ‘static’ structures in the PDB to modern crystallographic standards. The publically available PDB_REDO database provides better model statistics and contributes to better refinement and validation targets. |
---|