Cargando…

Alert Threshold Algorithms and Malaria Epidemic Detection

We describe a method for comparing the ability of different alert threshold algorithms to detect malaria epidemics and use it with a dataset consisting of weekly malaria cases collected from health facilities in 10 districts of Ethiopia from 1990 to 2000. Four types of alert threshold algorithms are...

Descripción completa

Detalles Bibliográficos
Autores principales: Teklehaimanot, Hailay Desta, Schwartz, Joel, Teklehaimanot, Awash, Lipsitch, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323320/
https://www.ncbi.nlm.nih.gov/pubmed/15324541
http://dx.doi.org/10.3201/eid1007.030722
Descripción
Sumario:We describe a method for comparing the ability of different alert threshold algorithms to detect malaria epidemics and use it with a dataset consisting of weekly malaria cases collected from health facilities in 10 districts of Ethiopia from 1990 to 2000. Four types of alert threshold algorithms are compared: weekly percentile, weekly mean with standard deviation (simple, moving average, and log-transformed case numbers), slide positivity proportion, and slope of weekly cases on log scale. To compare dissimilar alert types on a single scale, a curve was plotted for each type of alert, which showed potentially prevented cases versus number of alerts triggered over 10 years. Simple weekly percentile cutoffs appear to be as good as more complex algorithms for detecting malaria epidemics in Ethiopia. The comparative method developed here may be useful for testing other proposed alert thresholds and for application in other populations.