Cargando…
Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models
BACKGROUND: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-O-methyl...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323460/ https://www.ncbi.nlm.nih.gov/pubmed/22339795 http://dx.doi.org/10.1186/1742-2094-9-35 |
_version_ | 1782229204926988288 |
---|---|
author | Lee, Young-Jung Choi, Dong-Young Choi, Im Seop Kim, Ki Ho Kim, Young Hee Kim, Hwan Mook Lee, Kiho Cho, Won Gil Jung, Jea Kyung Han, Sang Bae Han, Jin-Yi Nam, Sang-Yoon Yun, Young Won Jeong, Jae Hwang Oh, Ki-Wan Hong, Jin Tae |
author_facet | Lee, Young-Jung Choi, Dong-Young Choi, Im Seop Kim, Ki Ho Kim, Young Hee Kim, Hwan Mook Lee, Kiho Cho, Won Gil Jung, Jea Kyung Han, Sang Bae Han, Jin-Yi Nam, Sang-Yoon Yun, Young Won Jeong, Jae Hwang Oh, Ki-Wan Hong, Jin Tae |
author_sort | Lee, Young-Jung |
collection | PubMed |
description | BACKGROUND: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-O-methylhonokiol, a constituent of Magnolia officinalis, on memory deficiency caused by LPS, along with the underlying mechanisms. METHODS: We investigated whether 4-O-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-O-methylhonkiol (0.5, 1 and 2 μM). RESULTS: Oral administration of 4-O-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-O-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4-O-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E(2), tumor necrosis factor-α, and interleukin-1β in the LPS-stimulated cultured astrocytes. 4-O-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-O-methylhonokiol inhibited LPS-induced Aβ(1-42 )generation, β- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells. CONCLUSION: These results suggest that 4-O-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-O-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD. |
format | Online Article Text |
id | pubmed-3323460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33234602012-04-16 Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models Lee, Young-Jung Choi, Dong-Young Choi, Im Seop Kim, Ki Ho Kim, Young Hee Kim, Hwan Mook Lee, Kiho Cho, Won Gil Jung, Jea Kyung Han, Sang Bae Han, Jin-Yi Nam, Sang-Yoon Yun, Young Won Jeong, Jae Hwang Oh, Ki-Wan Hong, Jin Tae J Neuroinflammation Research BACKGROUND: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-O-methylhonokiol, a constituent of Magnolia officinalis, on memory deficiency caused by LPS, along with the underlying mechanisms. METHODS: We investigated whether 4-O-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-O-methylhonkiol (0.5, 1 and 2 μM). RESULTS: Oral administration of 4-O-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-O-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4-O-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E(2), tumor necrosis factor-α, and interleukin-1β in the LPS-stimulated cultured astrocytes. 4-O-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-O-methylhonokiol inhibited LPS-induced Aβ(1-42 )generation, β- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells. CONCLUSION: These results suggest that 4-O-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-O-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD. BioMed Central 2012-02-19 /pmc/articles/PMC3323460/ /pubmed/22339795 http://dx.doi.org/10.1186/1742-2094-9-35 Text en Copyright ©2012 Lee et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Lee, Young-Jung Choi, Dong-Young Choi, Im Seop Kim, Ki Ho Kim, Young Hee Kim, Hwan Mook Lee, Kiho Cho, Won Gil Jung, Jea Kyung Han, Sang Bae Han, Jin-Yi Nam, Sang-Yoon Yun, Young Won Jeong, Jae Hwang Oh, Ki-Wan Hong, Jin Tae Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title | Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title_full | Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title_fullStr | Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title_full_unstemmed | Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title_short | Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models |
title_sort | inhibitory effect of 4-o-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappab in vitro and in vivo models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323460/ https://www.ncbi.nlm.nih.gov/pubmed/22339795 http://dx.doi.org/10.1186/1742-2094-9-35 |
work_keys_str_mv | AT leeyoungjung inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT choidongyoung inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT choiimseop inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT kimkiho inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT kimyounghee inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT kimhwanmook inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT leekiho inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT chowongil inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT jungjeakyung inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT hansangbae inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT hanjinyi inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT namsangyoon inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT yunyoungwon inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT jeongjaehwang inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT ohkiwan inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels AT hongjintae inhibitoryeffectof4omethylhonokiolonlipopolysaccharideinducedneuroinflammationamyloidogenesisandmemoryimpairmentviainhibitionofnuclearfactorkappabinvitroandinvivomodels |