Cargando…

A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis

Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involv...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Marcus J., Lampe, Marko, Merrifield, Christien J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323523/
https://www.ncbi.nlm.nih.gov/pubmed/22505844
http://dx.doi.org/10.1371/journal.pbio.1001302
_version_ 1782229217389314048
author Taylor, Marcus J.
Lampe, Marko
Merrifield, Christien J.
author_facet Taylor, Marcus J.
Lampe, Marko
Merrifield, Christien J.
author_sort Taylor, Marcus J.
collection PubMed
description Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20–30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission.
format Online
Article
Text
id pubmed-3323523
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33235232012-04-13 A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis Taylor, Marcus J. Lampe, Marko Merrifield, Christien J. PLoS Biol Research Article Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20–30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission. Public Library of Science 2012-04-10 /pmc/articles/PMC3323523/ /pubmed/22505844 http://dx.doi.org/10.1371/journal.pbio.1001302 Text en Taylor et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Taylor, Marcus J.
Lampe, Marko
Merrifield, Christien J.
A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title_full A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title_fullStr A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title_full_unstemmed A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title_short A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis
title_sort feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323523/
https://www.ncbi.nlm.nih.gov/pubmed/22505844
http://dx.doi.org/10.1371/journal.pbio.1001302
work_keys_str_mv AT taylormarcusj afeedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis
AT lampemarko afeedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis
AT merrifieldchristienj afeedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis
AT taylormarcusj feedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis
AT lampemarko feedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis
AT merrifieldchristienj feedbackloopbetweendynaminandactinrecruitmentduringclathrinmediatedendocytosis