Cargando…
Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323548/ https://www.ncbi.nlm.nih.gov/pubmed/22506035 http://dx.doi.org/10.1371/journal.pone.0034617 |
_version_ | 1782229224248049664 |
---|---|
author | Müller, Werner E. G. Wang, Xiaohong Grebenjuk, Vlad A. Korzhev, Michael Wiens, Matthias Schloßmacher, Ute Schröder, Heinz C. |
author_facet | Müller, Werner E. G. Wang, Xiaohong Grebenjuk, Vlad A. Korzhev, Michael Wiens, Matthias Schloßmacher, Ute Schröder, Heinz C. |
author_sort | Müller, Werner E. G. |
collection | PubMed |
description | Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast). |
format | Online Article Text |
id | pubmed-3323548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33235482012-04-13 Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge Müller, Werner E. G. Wang, Xiaohong Grebenjuk, Vlad A. Korzhev, Michael Wiens, Matthias Schloßmacher, Ute Schröder, Heinz C. PLoS One Research Article Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast). Public Library of Science 2012-04-10 /pmc/articles/PMC3323548/ /pubmed/22506035 http://dx.doi.org/10.1371/journal.pone.0034617 Text en Müller et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Müller, Werner E. G. Wang, Xiaohong Grebenjuk, Vlad A. Korzhev, Michael Wiens, Matthias Schloßmacher, Ute Schröder, Heinz C. Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title | Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title_full | Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title_fullStr | Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title_full_unstemmed | Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title_short | Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge |
title_sort | common genetic denominators for ca(++)-based skeleton in metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323548/ https://www.ncbi.nlm.nih.gov/pubmed/22506035 http://dx.doi.org/10.1371/journal.pone.0034617 |
work_keys_str_mv | AT mullerwernereg commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT wangxiaohong commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT grebenjukvlada commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT korzhevmichael commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT wiensmatthias commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT schloßmacherute commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge AT schroderheinzc commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge |