Cargando…

Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge

Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Werner E. G., Wang, Xiaohong, Grebenjuk, Vlad A., Korzhev, Michael, Wiens, Matthias, Schloßmacher, Ute, Schröder, Heinz C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323548/
https://www.ncbi.nlm.nih.gov/pubmed/22506035
http://dx.doi.org/10.1371/journal.pone.0034617
_version_ 1782229224248049664
author Müller, Werner E. G.
Wang, Xiaohong
Grebenjuk, Vlad A.
Korzhev, Michael
Wiens, Matthias
Schloßmacher, Ute
Schröder, Heinz C.
author_facet Müller, Werner E. G.
Wang, Xiaohong
Grebenjuk, Vlad A.
Korzhev, Michael
Wiens, Matthias
Schloßmacher, Ute
Schröder, Heinz C.
author_sort Müller, Werner E. G.
collection PubMed
description Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast).
format Online
Article
Text
id pubmed-3323548
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33235482012-04-13 Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge Müller, Werner E. G. Wang, Xiaohong Grebenjuk, Vlad A. Korzhev, Michael Wiens, Matthias Schloßmacher, Ute Schröder, Heinz C. PLoS One Research Article Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast). Public Library of Science 2012-04-10 /pmc/articles/PMC3323548/ /pubmed/22506035 http://dx.doi.org/10.1371/journal.pone.0034617 Text en Müller et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Müller, Werner E. G.
Wang, Xiaohong
Grebenjuk, Vlad A.
Korzhev, Michael
Wiens, Matthias
Schloßmacher, Ute
Schröder, Heinz C.
Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title_full Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title_fullStr Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title_full_unstemmed Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title_short Common Genetic Denominators for Ca(++)-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge
title_sort common genetic denominators for ca(++)-based skeleton in metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323548/
https://www.ncbi.nlm.nih.gov/pubmed/22506035
http://dx.doi.org/10.1371/journal.pone.0034617
work_keys_str_mv AT mullerwernereg commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT wangxiaohong commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT grebenjukvlada commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT korzhevmichael commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT wiensmatthias commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT schloßmacherute commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge
AT schroderheinzc commongeneticdenominatorsforcabasedskeletoninmetazoaroleofosteoclaststimulatingfactorandofcarbonicanhydraseinacalcareoussponge