Cargando…

Genome-wide expression profiling of schizophrenia using a large combined cohort

Numerous studies have examined gene expression profiles in post-mortem human brain samples from individuals with schizophrenia compared to healthy controls, to gain insight into the molecular mechanisms of the disease. While some findings have been replicated across studies, there is a general lack...

Descripción completa

Detalles Bibliográficos
Autores principales: Mistry, Meeta, Gillis, Jesse, Pavlidis, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323740/
https://www.ncbi.nlm.nih.gov/pubmed/22212594
http://dx.doi.org/10.1038/mp.2011.172
Descripción
Sumario:Numerous studies have examined gene expression profiles in post-mortem human brain samples from individuals with schizophrenia compared to healthy controls, to gain insight into the molecular mechanisms of the disease. While some findings have been replicated across studies, there is a general lack of consensus of which genes or pathways are affected. It has been unclear if these differences are due to the underlying cohorts, or methodological considerations. Here we present the most comprehensive analysis to date of expression patterns in the prefrontal cortex of schizophrenic compared to unaffected controls. Using data from seven independent studies, we assembled a data set of 153 affected and 153 control individuals. Remarkably, we identified expression differences in the brains of schizophrenics that are validated by up to seven laboratories using independent cohorts. Our combined analysis revealed a signature of 39 probes that are up-regulated in schizophrenia and 86 down-regulated. Some of these genes were previously identified in studies that were not included in our analysis, while others are novel to our analysis. In particular, we observe gene expression changes associated with various aspects of neuronal communication, and alterations of processes affected as a consequence of changes in synaptic functioning. A gene network analysis predicted previously unidentified functional relationships among the signature genes. Our results provide evidence for a common underlying expression signature in this heterogeneous disorder.