Cargando…
A Bayesian approach to targeted experiment design
Motivation: Systems biology employs mathematical modelling to further our understanding of biochemical pathways. Since the amount of experimental data on which the models are parameterized is often limited, these models exhibit large uncertainty in both parameters and predictions. Statistical method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324513/ https://www.ncbi.nlm.nih.gov/pubmed/22368245 http://dx.doi.org/10.1093/bioinformatics/bts092 |
_version_ | 1782229324287442944 |
---|---|
author | Vanlier, J. Tiemann, C. A. Hilbers, P. A. J. van Riel, N. A. W. |
author_facet | Vanlier, J. Tiemann, C. A. Hilbers, P. A. J. van Riel, N. A. W. |
author_sort | Vanlier, J. |
collection | PubMed |
description | Motivation: Systems biology employs mathematical modelling to further our understanding of biochemical pathways. Since the amount of experimental data on which the models are parameterized is often limited, these models exhibit large uncertainty in both parameters and predictions. Statistical methods can be used to select experiments that will reduce such uncertainty in an optimal manner. However, existing methods for optimal experiment design (OED) rely on assumptions that are inappropriate when data are scarce considering model complexity. Results: We have developed a novel method to perform OED for models that cope with large parameter uncertainty. We employ a Bayesian approach involving importance sampling of the posterior predictive distribution to predict the efficacy of a new measurement at reducing the uncertainty of a selected prediction. We demonstrate the method by applying it to a case where we show that specific combinations of experiments result in more precise predictions. Availability and implementation: Source code is available at: http://bmi.bmt.tue.nl/sysbio/software/pua.html Contact: j.vanlier@tue.nl; N.A.W.v.Riel@tue.nl Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-3324513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33245132012-04-12 A Bayesian approach to targeted experiment design Vanlier, J. Tiemann, C. A. Hilbers, P. A. J. van Riel, N. A. W. Bioinformatics Original Papers Motivation: Systems biology employs mathematical modelling to further our understanding of biochemical pathways. Since the amount of experimental data on which the models are parameterized is often limited, these models exhibit large uncertainty in both parameters and predictions. Statistical methods can be used to select experiments that will reduce such uncertainty in an optimal manner. However, existing methods for optimal experiment design (OED) rely on assumptions that are inappropriate when data are scarce considering model complexity. Results: We have developed a novel method to perform OED for models that cope with large parameter uncertainty. We employ a Bayesian approach involving importance sampling of the posterior predictive distribution to predict the efficacy of a new measurement at reducing the uncertainty of a selected prediction. We demonstrate the method by applying it to a case where we show that specific combinations of experiments result in more precise predictions. Availability and implementation: Source code is available at: http://bmi.bmt.tue.nl/sysbio/software/pua.html Contact: j.vanlier@tue.nl; N.A.W.v.Riel@tue.nl Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2012-04-15 2012-02-24 /pmc/articles/PMC3324513/ /pubmed/22368245 http://dx.doi.org/10.1093/bioinformatics/bts092 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Vanlier, J. Tiemann, C. A. Hilbers, P. A. J. van Riel, N. A. W. A Bayesian approach to targeted experiment design |
title | A Bayesian approach to targeted experiment design |
title_full | A Bayesian approach to targeted experiment design |
title_fullStr | A Bayesian approach to targeted experiment design |
title_full_unstemmed | A Bayesian approach to targeted experiment design |
title_short | A Bayesian approach to targeted experiment design |
title_sort | bayesian approach to targeted experiment design |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324513/ https://www.ncbi.nlm.nih.gov/pubmed/22368245 http://dx.doi.org/10.1093/bioinformatics/bts092 |
work_keys_str_mv | AT vanlierj abayesianapproachtotargetedexperimentdesign AT tiemannca abayesianapproachtotargetedexperimentdesign AT hilberspaj abayesianapproachtotargetedexperimentdesign AT vanrielnaw abayesianapproachtotargetedexperimentdesign AT vanlierj bayesianapproachtotargetedexperimentdesign AT tiemannca bayesianapproachtotargetedexperimentdesign AT hilberspaj bayesianapproachtotargetedexperimentdesign AT vanrielnaw bayesianapproachtotargetedexperimentdesign |