Cargando…
A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling
Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325266/ https://www.ncbi.nlm.nih.gov/pubmed/22511947 http://dx.doi.org/10.1371/journal.pone.0034507 |
_version_ | 1782229414539427840 |
---|---|
author | Billing, Ola Natarajan, Balasubramanian Mohammed, Ateequrrahman Naredi, Peter Kao, Gautam |
author_facet | Billing, Ola Natarajan, Balasubramanian Mohammed, Ateequrrahman Naredi, Peter Kao, Gautam |
author_sort | Billing, Ola |
collection | PubMed |
description | Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans. |
format | Online Article Text |
id | pubmed-3325266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33252662012-04-17 A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling Billing, Ola Natarajan, Balasubramanian Mohammed, Ateequrrahman Naredi, Peter Kao, Gautam PLoS One Research Article Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans. Public Library of Science 2012-04-12 /pmc/articles/PMC3325266/ /pubmed/22511947 http://dx.doi.org/10.1371/journal.pone.0034507 Text en Billing et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Billing, Ola Natarajan, Balasubramanian Mohammed, Ateequrrahman Naredi, Peter Kao, Gautam A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title | A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title_full | A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title_fullStr | A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title_full_unstemmed | A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title_short | A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling |
title_sort | directed rnai screen based on larval growth arrest reveals new modifiers of c. elegans insulin signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325266/ https://www.ncbi.nlm.nih.gov/pubmed/22511947 http://dx.doi.org/10.1371/journal.pone.0034507 |
work_keys_str_mv | AT billingola adirectedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT natarajanbalasubramanian adirectedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT mohammedateequrrahman adirectedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT naredipeter adirectedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT kaogautam adirectedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT billingola directedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT natarajanbalasubramanian directedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT mohammedateequrrahman directedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT naredipeter directedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling AT kaogautam directedrnaiscreenbasedonlarvalgrowtharrestrevealsnewmodifiersofcelegansinsulinsignaling |