Cargando…

Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging

Aging increases susceptibility to infection, in part because thymic involution culminates in reduced naïve T-lymphocyte output. Thymic epithelial cells (TECs) are critical to ensure normal maturation of thymocytes and production of peripheral T cells. The forkhead-class transcription factor, encoded...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jianfei, Feng, Yan, Barnes, Peter, Huang, Fang-Fang, Idell, Steven, Su, Dong-Ming, Shams, Homayoun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326029/
https://www.ncbi.nlm.nih.gov/pubmed/22514652
http://dx.doi.org/10.1371/journal.pone.0034681
_version_ 1782229493982691328
author Guo, Jianfei
Feng, Yan
Barnes, Peter
Huang, Fang-Fang
Idell, Steven
Su, Dong-Ming
Shams, Homayoun
author_facet Guo, Jianfei
Feng, Yan
Barnes, Peter
Huang, Fang-Fang
Idell, Steven
Su, Dong-Ming
Shams, Homayoun
author_sort Guo, Jianfei
collection PubMed
description Aging increases susceptibility to infection, in part because thymic involution culminates in reduced naïve T-lymphocyte output. Thymic epithelial cells (TECs) are critical to ensure normal maturation of thymocytes and production of peripheral T cells. The forkhead-class transcription factor, encoded by FoxN1, regulates development, differentiation, and function of TECs, both in the prenatal and postnatal thymus. We recently showed that expression of FoxN1, by keratin 14 (K14)-expressing epithelial cells is essential for maintenance of thymic medullary architecture, and deletion of FoxN1 in K14 promoter-driven TECs inhibited development of mature TECs and reduced the number of total thymocytes. These findings are reminiscent of changes observed during normal thymic aging. In the current report, we compared the effects of K14-driven FoxN1 deletion on peripheral T cell function in response to influenza virus infection with those associated with normal aging in a mouse model. FoxN1-deleted mice had reduced numbers of peripheral CD62L+CD44− naïve T-cells. In addition, during influenza infection, these animals had reduced antigen-specific CD8+ T-cell and IgG responses to influenza virus, combined with increased lung injury, weight loss and mortality. These findings paralleled those observed in aged wild type mice, providing the first evidence that K14-mediated FoxN1 deletion causes changes in T-cell function that mimic those in aging during an immune response to challenge with an infectious agent.
format Online
Article
Text
id pubmed-3326029
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33260292012-04-18 Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging Guo, Jianfei Feng, Yan Barnes, Peter Huang, Fang-Fang Idell, Steven Su, Dong-Ming Shams, Homayoun PLoS One Research Article Aging increases susceptibility to infection, in part because thymic involution culminates in reduced naïve T-lymphocyte output. Thymic epithelial cells (TECs) are critical to ensure normal maturation of thymocytes and production of peripheral T cells. The forkhead-class transcription factor, encoded by FoxN1, regulates development, differentiation, and function of TECs, both in the prenatal and postnatal thymus. We recently showed that expression of FoxN1, by keratin 14 (K14)-expressing epithelial cells is essential for maintenance of thymic medullary architecture, and deletion of FoxN1 in K14 promoter-driven TECs inhibited development of mature TECs and reduced the number of total thymocytes. These findings are reminiscent of changes observed during normal thymic aging. In the current report, we compared the effects of K14-driven FoxN1 deletion on peripheral T cell function in response to influenza virus infection with those associated with normal aging in a mouse model. FoxN1-deleted mice had reduced numbers of peripheral CD62L+CD44− naïve T-cells. In addition, during influenza infection, these animals had reduced antigen-specific CD8+ T-cell and IgG responses to influenza virus, combined with increased lung injury, weight loss and mortality. These findings paralleled those observed in aged wild type mice, providing the first evidence that K14-mediated FoxN1 deletion causes changes in T-cell function that mimic those in aging during an immune response to challenge with an infectious agent. Public Library of Science 2012-04-13 /pmc/articles/PMC3326029/ /pubmed/22514652 http://dx.doi.org/10.1371/journal.pone.0034681 Text en Guo et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Guo, Jianfei
Feng, Yan
Barnes, Peter
Huang, Fang-Fang
Idell, Steven
Su, Dong-Ming
Shams, Homayoun
Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title_full Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title_fullStr Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title_full_unstemmed Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title_short Deletion of FoxN1 in the Thymic Medullary Epithelium Reduces Peripheral T Cell Responses to Infection and Mimics Changes of Aging
title_sort deletion of foxn1 in the thymic medullary epithelium reduces peripheral t cell responses to infection and mimics changes of aging
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326029/
https://www.ncbi.nlm.nih.gov/pubmed/22514652
http://dx.doi.org/10.1371/journal.pone.0034681
work_keys_str_mv AT guojianfei deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT fengyan deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT barnespeter deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT huangfangfang deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT idellsteven deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT sudongming deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging
AT shamshomayoun deletionoffoxn1inthethymicmedullaryepitheliumreducesperipheraltcellresponsestoinfectionandmimicschangesofaging