Cargando…
Neuronal Variability during Handwriting: Lognormal Distribution
We examined time-dependent statistical properties of electromyographic (EMG) signals recorded from intrinsic hand muscles during handwriting. Our analysis showed that trial-to-trial neuronal variability of EMG signals is well described by the lognormal distribution clearly distinguished from the Gau...
Autores principales: | Rupasov, Valery I., Lebedev, Mikhail A., Erlichman, Joseph S., Linderman, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326033/ https://www.ncbi.nlm.nih.gov/pubmed/22514664 http://dx.doi.org/10.1371/journal.pone.0034759 |
Ejemplares similares
-
Time-Dependent Statistical and Correlation Properties of Neural Signals during Handwriting
por: Rupasov, Valery I., et al.
Publicado: (2012) -
Recognition of Handwriting from Electromyography
por: Linderman, Michael, et al.
Publicado: (2009) -
The lognormal handwriter: learning, performing, and declining
por: Plamondon, Réjean, et al.
Publicado: (2013) -
A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings
por: Okorokova, Elizaveta, et al.
Publicado: (2015) -
Ubiquitous lognormal distribution of neuron densities in mammalian cerebral cortex
por: Morales-Gregorio, Aitor, et al.
Publicado: (2023)