Cargando…

Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands

Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The se...

Descripción completa

Detalles Bibliográficos
Autores principales: Carette, Xavier, Blondiaux, Nicolas, Willery, Eve, Hoos, Sylviane, Lecat-Guillet, Nathalie, Lens, Zoé, Wohlkönig, Alexandre, Wintjens, René, Soror, Sameh H., Frénois, Frédéric, Dirié, Bertrand, Villeret, Vincent, England, Patrick, Lippens, Guy, Deprez, Benoit, Locht, Camille, Willand, Nicolas, Baulard, Alain R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326297/
https://www.ncbi.nlm.nih.gov/pubmed/22156370
http://dx.doi.org/10.1093/nar/gkr1113
_version_ 1782229510595280896
author Carette, Xavier
Blondiaux, Nicolas
Willery, Eve
Hoos, Sylviane
Lecat-Guillet, Nathalie
Lens, Zoé
Wohlkönig, Alexandre
Wintjens, René
Soror, Sameh H.
Frénois, Frédéric
Dirié, Bertrand
Villeret, Vincent
England, Patrick
Lippens, Guy
Deprez, Benoit
Locht, Camille
Willand, Nicolas
Baulard, Alain R.
author_facet Carette, Xavier
Blondiaux, Nicolas
Willery, Eve
Hoos, Sylviane
Lecat-Guillet, Nathalie
Lens, Zoé
Wohlkönig, Alexandre
Wintjens, René
Soror, Sameh H.
Frénois, Frédéric
Dirié, Bertrand
Villeret, Vincent
England, Patrick
Lippens, Guy
Deprez, Benoit
Locht, Camille
Willand, Nicolas
Baulard, Alain R.
author_sort Carette, Xavier
collection PubMed
description Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors.
format Online
Article
Text
id pubmed-3326297
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-33262972012-04-16 Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands Carette, Xavier Blondiaux, Nicolas Willery, Eve Hoos, Sylviane Lecat-Guillet, Nathalie Lens, Zoé Wohlkönig, Alexandre Wintjens, René Soror, Sameh H. Frénois, Frédéric Dirié, Bertrand Villeret, Vincent England, Patrick Lippens, Guy Deprez, Benoit Locht, Camille Willand, Nicolas Baulard, Alain R. Nucleic Acids Res Molecular Biology Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors. Oxford University Press 2012-04 2011-12-09 /pmc/articles/PMC3326297/ /pubmed/22156370 http://dx.doi.org/10.1093/nar/gkr1113 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Molecular Biology
Carette, Xavier
Blondiaux, Nicolas
Willery, Eve
Hoos, Sylviane
Lecat-Guillet, Nathalie
Lens, Zoé
Wohlkönig, Alexandre
Wintjens, René
Soror, Sameh H.
Frénois, Frédéric
Dirié, Bertrand
Villeret, Vincent
England, Patrick
Lippens, Guy
Deprez, Benoit
Locht, Camille
Willand, Nicolas
Baulard, Alain R.
Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title_full Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title_fullStr Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title_full_unstemmed Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title_short Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
title_sort structural activation of the transcriptional repressor ethr from mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326297/
https://www.ncbi.nlm.nih.gov/pubmed/22156370
http://dx.doi.org/10.1093/nar/gkr1113
work_keys_str_mv AT carettexavier structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT blondiauxnicolas structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT willeryeve structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT hoossylviane structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT lecatguilletnathalie structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT lenszoe structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT wohlkonigalexandre structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT wintjensrene structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT sororsamehh structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT frenoisfrederic structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT diriebertrand structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT villeretvincent structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT englandpatrick structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT lippensguy structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT deprezbenoit structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT lochtcamille structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT willandnicolas structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands
AT baulardalainr structuralactivationofthetranscriptionalrepressorethrfrommycobacteriumtuberculosisbysingleaminoacidchangemimickingnaturalandsyntheticligands