Cargando…
Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326299/ https://www.ncbi.nlm.nih.gov/pubmed/22139921 http://dx.doi.org/10.1093/nar/gkr1131 |
_version_ | 1782229511051411456 |
---|---|
author | Jühling, Frank Pütz, Joern Bernt, Matthias Donath, Alexander Middendorf, Martin Florentz, Catherine Stadler, Peter F. |
author_facet | Jühling, Frank Pütz, Joern Bernt, Matthias Donath, Alexander Middendorf, Martin Florentz, Catherine Stadler, Peter F. |
author_sort | Jühling, Frank |
collection | PubMed |
description | Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. |
format | Online Article Text |
id | pubmed-3326299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33262992012-04-16 Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements Jühling, Frank Pütz, Joern Bernt, Matthias Donath, Alexander Middendorf, Martin Florentz, Catherine Stadler, Peter F. Nucleic Acids Res Computational Biology Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. Oxford University Press 2012-04 2011-12-01 /pmc/articles/PMC3326299/ /pubmed/22139921 http://dx.doi.org/10.1093/nar/gkr1131 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Computational Biology Jühling, Frank Pütz, Joern Bernt, Matthias Donath, Alexander Middendorf, Martin Florentz, Catherine Stadler, Peter F. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title | Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title_full | Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title_fullStr | Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title_full_unstemmed | Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title_short | Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements |
title_sort | improved systematic trna gene annotation allows new insights into the evolution of mitochondrial trna structures and into the mechanisms of mitochondrial genome rearrangements |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326299/ https://www.ncbi.nlm.nih.gov/pubmed/22139921 http://dx.doi.org/10.1093/nar/gkr1131 |
work_keys_str_mv | AT juhlingfrank improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT putzjoern improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT berntmatthias improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT donathalexander improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT middendorfmartin improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT florentzcatherine improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements AT stadlerpeterf improvedsystematictrnageneannotationallowsnewinsightsintotheevolutionofmitochondrialtrnastructuresandintothemechanismsofmitochondrialgenomerearrangements |