Cargando…
The telomeric transcriptome of Schizosaccharomyces pombe
Eukaryotic telomeres are transcribed into telomeric repeat-containing RNA (TERRA). Telomeric transcription has been documented in mammals, birds, zebra fish, plants and budding yeast. Here we show that the chromosome ends of Schizosaccharomyces pombe produce distinct RNA species. As with budding yea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326308/ https://www.ncbi.nlm.nih.gov/pubmed/22139915 http://dx.doi.org/10.1093/nar/gkr1153 |
Sumario: | Eukaryotic telomeres are transcribed into telomeric repeat-containing RNA (TERRA). Telomeric transcription has been documented in mammals, birds, zebra fish, plants and budding yeast. Here we show that the chromosome ends of Schizosaccharomyces pombe produce distinct RNA species. As with budding yeast and mammals, S. pombe contains G-rich TERRA molecules and subtelomeric RNA species transcribed in the opposite direction of TERRA (ARRET). Moreover, fission yeast chromosome ends produce two novel RNA species: C-rich telomeric repeat-containing transcripts (ARIA) and subtelomeric transcripts complementary to ARRET (αARRET). RNA polymerase II (RNAPII) associates with pombe chromosome ends in vivo and the telomeric factor Rap1 negatively regulates this association, as well as the cellular accumulation of RNA emanating from chromosome ends. We also show that the RNAPII subunit Rpb7 and the non-canonical poly(A) polymerases Cid12 and Cid14 are involved in the regulation of TERRA, ARIA, ARRET and αARRET transcripts. We confirm the evolutionary conservation of telomere transcription, and reveal intriguing similarities and differences in the composition and regulation of telomeric transcripts among model organisms. |
---|