Cargando…
The microRNA miR-34 modulates aging and neurodegeneration in Drosophila
Human neurodegenerative diseases possess the temporal hallmark of afflicting the elderly population. Hence, aging is among the most significant factors to impinge on disease onset and progression(1), yet little is known of molecular pathways that connect these processes. Central to understanding thi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326599/ https://www.ncbi.nlm.nih.gov/pubmed/22343898 http://dx.doi.org/10.1038/nature10810 |
Sumario: | Human neurodegenerative diseases possess the temporal hallmark of afflicting the elderly population. Hence, aging is among the most significant factors to impinge on disease onset and progression(1), yet little is known of molecular pathways that connect these processes. Central to understanding this connection is to unmask the nature of pathways that functionally integrate aging, chronic maintenance of the brain and modulation of neurodegenerative disease. microRNAs (miRNA) are emerging as critical players in gene regulation during development, yet their role in adult-onset, age-associated processes are only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, presenting such a molecular link between aging and neurodegeneration. Fly miR-34 expression is adult-onset, brain-enriched and age-modulated. Whereas miR-34 loss triggers a gene profile of accelerated brain aging, late-onset brain degeneration and a catastrophic decline in survival, miR-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine (polyQ) disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. These studies indicate that miRNA-dependent pathways may impact adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process |
---|