Cargando…
Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): How to Assign Scans to Categories without Using Spatial Normalization
We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA) suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of variables (i.e., voxels) that are themselves grouped in...
Autores principales: | Abdi, Hervé, Williams, Lynne J., Connolly, Andrew C., Gobbini, M. Ida, Dunlop, Joseph P., Haxby, James V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328164/ https://www.ncbi.nlm.nih.gov/pubmed/22548125 http://dx.doi.org/10.1155/2012/634165 |
Ejemplares similares
-
Rational bases and generalized barycentrics: applications to finite elements and graphics
por: Wachspress, Eugene
Publicado: (2016) -
Efficient object location determination and error analysis based on barycentric coordinates
por: Bodonyi, Andrea, et al.
Publicado: (2020) -
Barycentre motion of beams due to beam-beam interaction in asymmetric ring colliders
por: Hirata, K, et al.
Publicado: (1989) -
Dimension reduction of thermoelectric properties using barycentric polynomial interpolation at Chebyshev nodes
por: Chung, Jaywan, et al.
Publicado: (2020) -
Computationally efficient barycentric interpolation of large grain boundary octonion point sets
por: Baird, Sterling G., et al.
Publicado: (2022)