Cargando…
Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes
Expression profiling techniques have been used to study the biology of many types of cancer but have been limited to some extent by the requirement for collection of fresh tissue. In contrast, formalin fixed paraffin embedded (FFPE) samples are widely available and represent a vast resource of poten...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328434/ https://www.ncbi.nlm.nih.gov/pubmed/22530001 http://dx.doi.org/10.1371/journal.pone.0035276 |
_version_ | 1782229739624202240 |
---|---|
author | Rentoft, Matilda Coates, Philip John Laurell, Göran Nylander, Karin |
author_facet | Rentoft, Matilda Coates, Philip John Laurell, Göran Nylander, Karin |
author_sort | Rentoft, Matilda |
collection | PubMed |
description | Expression profiling techniques have been used to study the biology of many types of cancer but have been limited to some extent by the requirement for collection of fresh tissue. In contrast, formalin fixed paraffin embedded (FFPE) samples are widely available and represent a vast resource of potential material. The techniques used to handle the degraded and modified RNA from these samples are relatively new and all the pitfalls and limitations of this material for whole genome expression profiling are not yet clarified. Here, we analyzed 70 FFPE tongue carcinoma samples and 17 controls using the whole genome DASL array covering nearly 21000 genes. We identified that sample age is related to quality of extracted RNA and that sample quality influences apparent expression levels in a non-random manner related to gene probe sequence, leading to spurious results. However, by removing sub-standard samples and analysing only those 28 cancers and 15 controls that had similar quality we were able to generate a list of 934 genes significantly altered in tongue cancer compared to control samples of tongue. This list contained previously identified changes and was enriched for genes involved in many cancer-related processes such as tissue remodelling, inflammation, differentiation and apoptosis. Four novel genes of potential importance in tongue cancer development and maintenance, SH3BGL2, SLC2A6, SLC16A3 and CXCL10, were independently confirmed, validating our data. Hence, gene expression profiling can be performed usefully on archival material if appropriate quality assurance steps are taken to ensure sample consistency and we present some recommendations for the use of FFPE material based on our findings. |
format | Online Article Text |
id | pubmed-3328434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33284342012-04-23 Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes Rentoft, Matilda Coates, Philip John Laurell, Göran Nylander, Karin PLoS One Research Article Expression profiling techniques have been used to study the biology of many types of cancer but have been limited to some extent by the requirement for collection of fresh tissue. In contrast, formalin fixed paraffin embedded (FFPE) samples are widely available and represent a vast resource of potential material. The techniques used to handle the degraded and modified RNA from these samples are relatively new and all the pitfalls and limitations of this material for whole genome expression profiling are not yet clarified. Here, we analyzed 70 FFPE tongue carcinoma samples and 17 controls using the whole genome DASL array covering nearly 21000 genes. We identified that sample age is related to quality of extracted RNA and that sample quality influences apparent expression levels in a non-random manner related to gene probe sequence, leading to spurious results. However, by removing sub-standard samples and analysing only those 28 cancers and 15 controls that had similar quality we were able to generate a list of 934 genes significantly altered in tongue cancer compared to control samples of tongue. This list contained previously identified changes and was enriched for genes involved in many cancer-related processes such as tissue remodelling, inflammation, differentiation and apoptosis. Four novel genes of potential importance in tongue cancer development and maintenance, SH3BGL2, SLC2A6, SLC16A3 and CXCL10, were independently confirmed, validating our data. Hence, gene expression profiling can be performed usefully on archival material if appropriate quality assurance steps are taken to ensure sample consistency and we present some recommendations for the use of FFPE material based on our findings. Public Library of Science 2012-04-17 /pmc/articles/PMC3328434/ /pubmed/22530001 http://dx.doi.org/10.1371/journal.pone.0035276 Text en Rentoft et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rentoft, Matilda Coates, Philip John Laurell, Göran Nylander, Karin Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title | Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title_full | Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title_fullStr | Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title_full_unstemmed | Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title_short | Transcriptional Profiling of Formalin Fixed Paraffin Embedded Tissue: Pitfalls and Recommendations for Identifying Biologically Relevant Changes |
title_sort | transcriptional profiling of formalin fixed paraffin embedded tissue: pitfalls and recommendations for identifying biologically relevant changes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328434/ https://www.ncbi.nlm.nih.gov/pubmed/22530001 http://dx.doi.org/10.1371/journal.pone.0035276 |
work_keys_str_mv | AT rentoftmatilda transcriptionalprofilingofformalinfixedparaffinembeddedtissuepitfallsandrecommendationsforidentifyingbiologicallyrelevantchanges AT coatesphilipjohn transcriptionalprofilingofformalinfixedparaffinembeddedtissuepitfallsandrecommendationsforidentifyingbiologicallyrelevantchanges AT laurellgoran transcriptionalprofilingofformalinfixedparaffinembeddedtissuepitfallsandrecommendationsforidentifyingbiologicallyrelevantchanges AT nylanderkarin transcriptionalprofilingofformalinfixedparaffinembeddedtissuepitfallsandrecommendationsforidentifyingbiologicallyrelevantchanges |