Cargando…

Signaling-Mediated Bacterial Persister Formation

Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics, and identify the role of oxidative stress and...

Descripción completa

Detalles Bibliográficos
Autores principales: Vega, Nicole M., Allison, Kyle R., Khalil, Ahmad S., Collins, James J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329571/
https://www.ncbi.nlm.nih.gov/pubmed/22426114
http://dx.doi.org/10.1038/nchembio.915
_version_ 1782229864883945472
author Vega, Nicole M.
Allison, Kyle R.
Khalil, Ahmad S.
Collins, James J.
author_facet Vega, Nicole M.
Allison, Kyle R.
Khalil, Ahmad S.
Collins, James J.
author_sort Vega, Nicole M.
collection PubMed
description Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics, and identify the role of oxidative stress and phage-shock pathways in this phenomenon. We propose a model in which indole signaling “inoculates” a bacterial sub-population against antibiotics by activating stress responses, leading to persister formation.
format Online
Article
Text
id pubmed-3329571
institution National Center for Biotechnology Information
language English
publishDate 2012
record_format MEDLINE/PubMed
spelling pubmed-33295712012-11-01 Signaling-Mediated Bacterial Persister Formation Vega, Nicole M. Allison, Kyle R. Khalil, Ahmad S. Collins, James J. Nat Chem Biol Article Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics, and identify the role of oxidative stress and phage-shock pathways in this phenomenon. We propose a model in which indole signaling “inoculates” a bacterial sub-population against antibiotics by activating stress responses, leading to persister formation. 2012-03-18 /pmc/articles/PMC3329571/ /pubmed/22426114 http://dx.doi.org/10.1038/nchembio.915 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Vega, Nicole M.
Allison, Kyle R.
Khalil, Ahmad S.
Collins, James J.
Signaling-Mediated Bacterial Persister Formation
title Signaling-Mediated Bacterial Persister Formation
title_full Signaling-Mediated Bacterial Persister Formation
title_fullStr Signaling-Mediated Bacterial Persister Formation
title_full_unstemmed Signaling-Mediated Bacterial Persister Formation
title_short Signaling-Mediated Bacterial Persister Formation
title_sort signaling-mediated bacterial persister formation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329571/
https://www.ncbi.nlm.nih.gov/pubmed/22426114
http://dx.doi.org/10.1038/nchembio.915
work_keys_str_mv AT veganicolem signalingmediatedbacterialpersisterformation
AT allisonkyler signalingmediatedbacterialpersisterformation
AT khalilahmads signalingmediatedbacterialpersisterformation
AT collinsjamesj signalingmediatedbacterialpersisterformation