Cargando…
Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy
Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329956/ https://www.ncbi.nlm.nih.gov/pubmed/22514169 http://dx.doi.org/10.1107/S0909049512003287 |
_version_ | 1782229912639242240 |
---|---|
author | Fife, Julie L. Rappaz, Michel Pistone, Mattia Celcer, Tine Mikuljan, Gordan Stampanoni, Marco |
author_facet | Fife, Julie L. Rappaz, Michel Pistone, Mattia Celcer, Tine Mikuljan, Gordan Stampanoni, Marco |
author_sort | Fife, Julie L. |
collection | PubMed |
description | Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials. |
format | Online Article Text |
id | pubmed-3329956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-33299562012-04-23 Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy Fife, Julie L. Rappaz, Michel Pistone, Mattia Celcer, Tine Mikuljan, Gordan Stampanoni, Marco J Synchrotron Radiat Research Papers Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials. International Union of Crystallography 2012-05-01 2012-03-16 /pmc/articles/PMC3329956/ /pubmed/22514169 http://dx.doi.org/10.1107/S0909049512003287 Text en © Julie L Fife et al. 2012 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Fife, Julie L. Rappaz, Michel Pistone, Mattia Celcer, Tine Mikuljan, Gordan Stampanoni, Marco Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title | Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title_full | Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title_fullStr | Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title_full_unstemmed | Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title_short | Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy |
title_sort | development of a laser-based heating system for in situ synchrotron-based x-ray tomographic microscopy |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329956/ https://www.ncbi.nlm.nih.gov/pubmed/22514169 http://dx.doi.org/10.1107/S0909049512003287 |
work_keys_str_mv | AT fifejuliel developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy AT rappazmichel developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy AT pistonemattia developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy AT celcertine developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy AT mikuljangordan developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy AT stampanonimarco developmentofalaserbasedheatingsystemforinsitusynchrotronbasedxraytomographicmicroscopy |