Cargando…

Haplotype reconstruction using perfect phylogeny and sequence data

Haplotype phasing is a well studied problem in the context of genotype data. With the recent developments in high-throughput sequencing, new algorithms are needed for haplotype phasing, when the number of samples sequenced is low and when the sequencing coverage is blow. High-throughput sequencing t...

Descripción completa

Detalles Bibliográficos
Autores principales: Efros, Anatoly, Halperin, Eran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330028/
https://www.ncbi.nlm.nih.gov/pubmed/22537042
http://dx.doi.org/10.1186/1471-2105-13-S6-S3
Descripción
Sumario:Haplotype phasing is a well studied problem in the context of genotype data. With the recent developments in high-throughput sequencing, new algorithms are needed for haplotype phasing, when the number of samples sequenced is low and when the sequencing coverage is blow. High-throughput sequencing technologies enables new possibilities for the inference of haplotypes. Since each read is originated from a single chromosome, all the variant sites it covers must derive from the same haplotype. Moreover, the sequencing process yields much higher SNP density than previous methods, resulting in a higher correlation between neighboring SNPs. We offer a new approach for haplotype phasing, which leverages on these two properties. Our suggested algorithm, called Perfect Phlogeny Haplotypes from Sequencing (PPHS) uses a perfect phylogeny model and it models the sequencing errors explicitly. We evaluated our method on real and simulated data, and we demonstrate that the algorithm outperforms previous methods when the sequencing error rate is high or when coverage is low.