Cargando…
Haplotype reconstruction using perfect phylogeny and sequence data
Haplotype phasing is a well studied problem in the context of genotype data. With the recent developments in high-throughput sequencing, new algorithms are needed for haplotype phasing, when the number of samples sequenced is low and when the sequencing coverage is blow. High-throughput sequencing t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330028/ https://www.ncbi.nlm.nih.gov/pubmed/22537042 http://dx.doi.org/10.1186/1471-2105-13-S6-S3 |
_version_ | 1782229918884560896 |
---|---|
author | Efros, Anatoly Halperin, Eran |
author_facet | Efros, Anatoly Halperin, Eran |
author_sort | Efros, Anatoly |
collection | PubMed |
description | Haplotype phasing is a well studied problem in the context of genotype data. With the recent developments in high-throughput sequencing, new algorithms are needed for haplotype phasing, when the number of samples sequenced is low and when the sequencing coverage is blow. High-throughput sequencing technologies enables new possibilities for the inference of haplotypes. Since each read is originated from a single chromosome, all the variant sites it covers must derive from the same haplotype. Moreover, the sequencing process yields much higher SNP density than previous methods, resulting in a higher correlation between neighboring SNPs. We offer a new approach for haplotype phasing, which leverages on these two properties. Our suggested algorithm, called Perfect Phlogeny Haplotypes from Sequencing (PPHS) uses a perfect phylogeny model and it models the sequencing errors explicitly. We evaluated our method on real and simulated data, and we demonstrate that the algorithm outperforms previous methods when the sequencing error rate is high or when coverage is low. |
format | Online Article Text |
id | pubmed-3330028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33300282012-04-20 Haplotype reconstruction using perfect phylogeny and sequence data Efros, Anatoly Halperin, Eran BMC Bioinformatics Proceedings Haplotype phasing is a well studied problem in the context of genotype data. With the recent developments in high-throughput sequencing, new algorithms are needed for haplotype phasing, when the number of samples sequenced is low and when the sequencing coverage is blow. High-throughput sequencing technologies enables new possibilities for the inference of haplotypes. Since each read is originated from a single chromosome, all the variant sites it covers must derive from the same haplotype. Moreover, the sequencing process yields much higher SNP density than previous methods, resulting in a higher correlation between neighboring SNPs. We offer a new approach for haplotype phasing, which leverages on these two properties. Our suggested algorithm, called Perfect Phlogeny Haplotypes from Sequencing (PPHS) uses a perfect phylogeny model and it models the sequencing errors explicitly. We evaluated our method on real and simulated data, and we demonstrate that the algorithm outperforms previous methods when the sequencing error rate is high or when coverage is low. BioMed Central 2012-04-19 /pmc/articles/PMC3330028/ /pubmed/22537042 http://dx.doi.org/10.1186/1471-2105-13-S6-S3 Text en Copyright ©2012 Efros and Halperin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Efros, Anatoly Halperin, Eran Haplotype reconstruction using perfect phylogeny and sequence data |
title | Haplotype reconstruction using perfect phylogeny and sequence data |
title_full | Haplotype reconstruction using perfect phylogeny and sequence data |
title_fullStr | Haplotype reconstruction using perfect phylogeny and sequence data |
title_full_unstemmed | Haplotype reconstruction using perfect phylogeny and sequence data |
title_short | Haplotype reconstruction using perfect phylogeny and sequence data |
title_sort | haplotype reconstruction using perfect phylogeny and sequence data |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330028/ https://www.ncbi.nlm.nih.gov/pubmed/22537042 http://dx.doi.org/10.1186/1471-2105-13-S6-S3 |
work_keys_str_mv | AT efrosanatoly haplotypereconstructionusingperfectphylogenyandsequencedata AT halperineran haplotypereconstructionusingperfectphylogenyandsequencedata |