Cargando…
Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities
Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucros...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331754/ https://www.ncbi.nlm.nih.gov/pubmed/22427376 http://dx.doi.org/10.2337/db11-1186 |
_version_ | 1782230137645826048 |
---|---|
author | Carvalho, Cristina Cardoso, Susana Correia, Sónia C. Santos, Renato X. Santos, Maria S. Baldeiras, Inês Oliveira, Catarina R. Moreira, Paula I. |
author_facet | Carvalho, Cristina Cardoso, Susana Correia, Sónia C. Santos, Renato X. Santos, Maria S. Baldeiras, Inês Oliveira, Catarina R. Moreira, Paula I. |
author_sort | Carvalho, Cristina |
collection | PubMed |
description | Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-AD), and WT mice fed 20% sucrose-sweetened water for 7 months. Polarography, spectrophotometry, fluorimetry, high-performance liquid chromatography, and electron microscopy were used to evaluate mitochondrial function, oxidative status, and ultrastructure. Western blotting was performed to determine the AD pathogenic protein levels. Sucrose intake caused metabolic alterations like those found in type 2 diabetes. Mitochondria from 3xTg-AD and sucrose-treated WT mice presented a similar impairment of the respiratory chain and phosphorylation system, decreased capacity to accumulate calcium, ultrastructural abnormalities, and oxidative imbalance. Interestingly, sucrose-treated WT mice presented a significant increase in amyloid β protein levels, a hallmark of AD. These results show that in mice, the metabolic alterations associated to diabetes contribute to the development of AD-like pathologic features. |
format | Online Article Text |
id | pubmed-3331754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-33317542013-05-01 Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities Carvalho, Cristina Cardoso, Susana Correia, Sónia C. Santos, Renato X. Santos, Maria S. Baldeiras, Inês Oliveira, Catarina R. Moreira, Paula I. Diabetes Complications Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-AD), and WT mice fed 20% sucrose-sweetened water for 7 months. Polarography, spectrophotometry, fluorimetry, high-performance liquid chromatography, and electron microscopy were used to evaluate mitochondrial function, oxidative status, and ultrastructure. Western blotting was performed to determine the AD pathogenic protein levels. Sucrose intake caused metabolic alterations like those found in type 2 diabetes. Mitochondria from 3xTg-AD and sucrose-treated WT mice presented a similar impairment of the respiratory chain and phosphorylation system, decreased capacity to accumulate calcium, ultrastructural abnormalities, and oxidative imbalance. Interestingly, sucrose-treated WT mice presented a significant increase in amyloid β protein levels, a hallmark of AD. These results show that in mice, the metabolic alterations associated to diabetes contribute to the development of AD-like pathologic features. American Diabetes Association 2012-05 2012-04-13 /pmc/articles/PMC3331754/ /pubmed/22427376 http://dx.doi.org/10.2337/db11-1186 Text en © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Complications Carvalho, Cristina Cardoso, Susana Correia, Sónia C. Santos, Renato X. Santos, Maria S. Baldeiras, Inês Oliveira, Catarina R. Moreira, Paula I. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title | Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title_full | Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title_fullStr | Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title_full_unstemmed | Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title_short | Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities |
title_sort | metabolic alterations induced by sucrose intake and alzheimer’s disease promote similar brain mitochondrial abnormalities |
topic | Complications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331754/ https://www.ncbi.nlm.nih.gov/pubmed/22427376 http://dx.doi.org/10.2337/db11-1186 |
work_keys_str_mv | AT carvalhocristina metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT cardososusana metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT correiasoniac metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT santosrenatox metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT santosmarias metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT baldeirasines metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT oliveiracatarinar metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities AT moreirapaulai metabolicalterationsinducedbysucroseintakeandalzheimersdiseasepromotesimilarbrainmitochondrialabnormalities |