Cargando…
Adoptive Transfer With In Vitro Expanded Human Regulatory T Cells Protects Against Porcine Islet Xenograft Rejection via Interleukin-10 in Humanized Mice
T cell-mediated rejection remains a barrier to the clinical application of islet xenotransplantation. Regulatory T cells (Treg) regulate immune responses by suppressing effector T cells. This study aimed to determine the ability of human Treg to prevent islet xenograft rejection and the mechanism(s)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331767/ https://www.ncbi.nlm.nih.gov/pubmed/22403295 http://dx.doi.org/10.2337/db11-1306 |
Sumario: | T cell-mediated rejection remains a barrier to the clinical application of islet xenotransplantation. Regulatory T cells (Treg) regulate immune responses by suppressing effector T cells. This study aimed to determine the ability of human Treg to prevent islet xenograft rejection and the mechanism(s) involved. Neonatal porcine islet transplanted NOD-SCID IL2rγ(−/−) mice received human peripheral blood mononuclear cells (PBMC) with in vitro expanded autologous Treg in the absence or presence of anti-human interleukin-10 (IL-10) monoclonal antibody. In addition, human PBMC-reconstituted recipient mice received recombinant human IL-10 (rhIL-10). Adoptive transfer with expanded autologous Treg prevented islet xenograft rejection in human PBMC-reconstituted mice by inhibiting graft infiltration of effector cells and their function. Neutralization of human IL-10 shortened xenograft survival in mice receiving human PBMC and Treg. In addition, rhIL-10 treatment led to prolonged xenograft survival in human PBMC-reconstituted mice. This study demonstrates the ability of human Treg to prevent T-cell effector function and the importance of IL-10 in this response. In vitro Treg expansion was a simple and effective strategy for generating autologous Treg and highlighted a potential adoptive Treg cell therapy to suppress antigraft T-cell responses and reduce the requirement for immunosuppression in islet xenotransplantation. |
---|