Cargando…

Risk of Foot-and-Mouth Disease Spread Due to Sole Occupancy Authorities and Linked Cattle Holdings

Livestock movements in Great Britain are well recorded, have been extensively analysed with respect to their role in disease spread, and have been used in real time to advise governments on the control of infectious diseases. Typically, livestock holdings are treated as distinct entities that must o...

Descripción completa

Detalles Bibliográficos
Autores principales: Orton, Richard J., Bessell, Paul R., Birch, Colin P. D., O'Hare, Anthony, Kao, Rowland R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331861/
https://www.ncbi.nlm.nih.gov/pubmed/22532841
http://dx.doi.org/10.1371/journal.pone.0035089
Descripción
Sumario:Livestock movements in Great Britain are well recorded, have been extensively analysed with respect to their role in disease spread, and have been used in real time to advise governments on the control of infectious diseases. Typically, livestock holdings are treated as distinct entities that must observe movement standstills upon receipt of livestock, and must report livestock movements. However, there are currently two dispensations that can exempt holdings from either observing standstills or reporting movements, namely the Sole Occupancy Authority (SOA) and Cattle Tracing System (CTS) Links, respectively. In this report we have used a combination of data analyses and computational modelling to investigate the usage and potential impact of such linked holdings on the size of a Foot-and-Mouth Disease (FMD) epidemic. Our analyses show that although SOAs are abundant, their dynamics appear relatively stagnant. The number of CTS Links is also abundant, and increasing rapidly. Although most linked holdings are only involved in a single CTS Link, some holdings are involved in numerous links that can be amalgamated to form “CTS Chains” which can be both large and geographically dispersed. Our model predicts that under a worst case scenario of “one infected – all infected”, SOAs do pose a risk of increasing the size (in terms of number of infected holdings) of a FMD epidemic, but this increase is mainly due to intra-SOA infection spread events. Furthermore, although SOAs do increase the geographic spread of an epidemic, this increase is predominantly local. Whereas, CTS Chains pose a risk of increasing both the size and the geographical spread of the disease substantially, under a worse case scenario. Our results highlight the need for further investigations into whether CTS Chains are transmission chains, and also investigations into intra-SOA movements and livestock distributions due to the lack of current data.