Cargando…

LINKING DEAFNESS GENES TO HAIR-BUNDLE DEVELOPMENT AND FUNCTION

The identification of genes underlying monogenic, early-onset forms of deafness in humans has provided unprecedented insight into the molecular mechanisms of hearing in the peripheral auditory system. The molecules involved in the development and function of the cochlea eluded characterization until...

Descripción completa

Detalles Bibliográficos
Autores principales: Petit, Christine, Richardson, Guy P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3332156/
https://www.ncbi.nlm.nih.gov/pubmed/19471269
http://dx.doi.org/10.1038/nn.2330
Descripción
Sumario:The identification of genes underlying monogenic, early-onset forms of deafness in humans has provided unprecedented insight into the molecular mechanisms of hearing in the peripheral auditory system. The molecules involved in the development and function of the cochlea eluded characterization until recently due to the paucity of the principle cell types present in cochlear hair cells, yet a genetic approach has circumvented this problem and succeeded in identifying proteins and deciphering some of the molecular complexes that operate in these cells . In combination with mouse models, the genetic approach is now revealing some of the principles underlying the development and physiology of the cochlea. The review centers on this facet of the genetics of hearing. Focusing on the hair bundle, the mechanosensory device of the sensory hair cell, we highlight recent advances in understanding the way in which the hair bundle is formed, how it operates as a mechanotransducer and how it processes sound. In particular, we discuss how this work highlights the roles played by various hair-bundle link types.