Cargando…

Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment

BACKGROUND: To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group of data sets that have common distributions. Although such models have been propos...

Descripción completa

Detalles Bibliográficos
Autor principal: Konishi, Tomokazu
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC333424/
https://www.ncbi.nlm.nih.gov/pubmed/14718068
http://dx.doi.org/10.1186/1471-2105-5-5
_version_ 1782121211035123712
author Konishi, Tomokazu
author_facet Konishi, Tomokazu
author_sort Konishi, Tomokazu
collection PubMed
description BACKGROUND: To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group of data sets that have common distributions. Although such models have been proposed for microarray data, they have not always fit the distribution of real data and thus have been inappropriate for normalization. Consequently, microarray data in most cases have been normalized with non-parametric methods that adjust data in a pair-wise manner. However, data analysis and the integration of resultant knowledge among experiments have been difficult, since such normalization concepts lack a universal standard. RESULTS: A three-parameter lognormal distribution model was tested on over 300 sets of microarray data. The model treats the hybridization background, which is difficult to identify from images of hybridization, as one of the parameters. A rigorous coincidence of the model to data sets was found, proving the model's appropriateness for microarray data. In fact, a closer fitting to Northern analysis was obtained. The model showed inconsistency only at very strong or weak data intensities. Measurement of z-scores as well as calculated ratios was reproducible only among data in the model-consistent intensity range; also, the ratios were independent of signal intensity at the corresponding range. CONCLUSION: The model could provide a universal standard for data, simplifying data analysis and knowledge integration. It was deduced that the ranges of inconsistency were caused by experimental errors or additive noise in the data; therefore, excluding the data corresponding to those marginal ranges will prevent misleading analytical conclusions.
format Text
id pubmed-333424
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-3334242004-02-08 Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment Konishi, Tomokazu BMC Bioinformatics Methodology Article BACKGROUND: To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group of data sets that have common distributions. Although such models have been proposed for microarray data, they have not always fit the distribution of real data and thus have been inappropriate for normalization. Consequently, microarray data in most cases have been normalized with non-parametric methods that adjust data in a pair-wise manner. However, data analysis and the integration of resultant knowledge among experiments have been difficult, since such normalization concepts lack a universal standard. RESULTS: A three-parameter lognormal distribution model was tested on over 300 sets of microarray data. The model treats the hybridization background, which is difficult to identify from images of hybridization, as one of the parameters. A rigorous coincidence of the model to data sets was found, proving the model's appropriateness for microarray data. In fact, a closer fitting to Northern analysis was obtained. The model showed inconsistency only at very strong or weak data intensities. Measurement of z-scores as well as calculated ratios was reproducible only among data in the model-consistent intensity range; also, the ratios were independent of signal intensity at the corresponding range. CONCLUSION: The model could provide a universal standard for data, simplifying data analysis and knowledge integration. It was deduced that the ranges of inconsistency were caused by experimental errors or additive noise in the data; therefore, excluding the data corresponding to those marginal ranges will prevent misleading analytical conclusions. BioMed Central 2004-01-13 /pmc/articles/PMC333424/ /pubmed/14718068 http://dx.doi.org/10.1186/1471-2105-5-5 Text en Copyright © 2004 Konishi; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Methodology Article
Konishi, Tomokazu
Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title_full Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title_fullStr Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title_full_unstemmed Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title_short Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
title_sort three-parameter lognormal distribution ubiquitously found in cdna microarray data and its application to parametric data treatment
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC333424/
https://www.ncbi.nlm.nih.gov/pubmed/14718068
http://dx.doi.org/10.1186/1471-2105-5-5
work_keys_str_mv AT konishitomokazu threeparameterlognormaldistributionubiquitouslyfoundincdnamicroarraydataanditsapplicationtoparametricdatatreatment