Cargando…
GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit
Ion fluxes mediated by glial cells are required for several physiological processes such as fluid homeostasis or the maintenance of low extracellular potassium during high neuronal activity. In mice, the disruption of the Cl(−) channel ClC-2 causes fluid accumulation leading to myelin vacuolation. A...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334819/ https://www.ncbi.nlm.nih.gov/pubmed/22405205 http://dx.doi.org/10.1016/j.neuron.2011.12.039 |
_version_ | 1782230693368037376 |
---|---|
author | Jeworutzki, Elena López-Hernández, Tania Capdevila-Nortes, Xavier Sirisi, Sònia Bengtsson, Luiza Montolio, Marisol Zifarelli, Giovanni Arnedo, Tanit Müller, Catrin S. Schulte, Uwe Nunes, Virginia Martínez, Albert Jentsch, Thomas J. Gasull, Xavier Pusch, Michael Estévez, Raúl |
author_facet | Jeworutzki, Elena López-Hernández, Tania Capdevila-Nortes, Xavier Sirisi, Sònia Bengtsson, Luiza Montolio, Marisol Zifarelli, Giovanni Arnedo, Tanit Müller, Catrin S. Schulte, Uwe Nunes, Virginia Martínez, Albert Jentsch, Thomas J. Gasull, Xavier Pusch, Michael Estévez, Raúl |
author_sort | Jeworutzki, Elena |
collection | PubMed |
description | Ion fluxes mediated by glial cells are required for several physiological processes such as fluid homeostasis or the maintenance of low extracellular potassium during high neuronal activity. In mice, the disruption of the Cl(−) channel ClC-2 causes fluid accumulation leading to myelin vacuolation. A similar vacuolation phenotype is detected in humans affected with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a leukodystrophy which is caused by mutations in MLC1 or GLIALCAM. We here identify GlialCAM as a ClC-2 binding partner. GlialCAM and ClC-2 colocalize in Bergmann glia, in astrocyte-astrocyte junctions at astrocytic endfeet around blood vessels, and in myelinated fiber tracts. GlialCAM targets ClC-2 to cell junctions, increases ClC-2 mediated currents, and changes its functional properties. Disease-causing GLIALCAM mutations abolish the targeting of the channel to cell junctions. This work describes the first auxiliary subunit of ClC-2 and suggests that ClC-2 may play a role in the pathology of MLC disease. VIDEO ABSTRACT: |
format | Online Article Text |
id | pubmed-3334819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33348192012-04-26 GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit Jeworutzki, Elena López-Hernández, Tania Capdevila-Nortes, Xavier Sirisi, Sònia Bengtsson, Luiza Montolio, Marisol Zifarelli, Giovanni Arnedo, Tanit Müller, Catrin S. Schulte, Uwe Nunes, Virginia Martínez, Albert Jentsch, Thomas J. Gasull, Xavier Pusch, Michael Estévez, Raúl Neuron Article Ion fluxes mediated by glial cells are required for several physiological processes such as fluid homeostasis or the maintenance of low extracellular potassium during high neuronal activity. In mice, the disruption of the Cl(−) channel ClC-2 causes fluid accumulation leading to myelin vacuolation. A similar vacuolation phenotype is detected in humans affected with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a leukodystrophy which is caused by mutations in MLC1 or GLIALCAM. We here identify GlialCAM as a ClC-2 binding partner. GlialCAM and ClC-2 colocalize in Bergmann glia, in astrocyte-astrocyte junctions at astrocytic endfeet around blood vessels, and in myelinated fiber tracts. GlialCAM targets ClC-2 to cell junctions, increases ClC-2 mediated currents, and changes its functional properties. Disease-causing GLIALCAM mutations abolish the targeting of the channel to cell junctions. This work describes the first auxiliary subunit of ClC-2 and suggests that ClC-2 may play a role in the pathology of MLC disease. VIDEO ABSTRACT: Cell Press 2012-03-08 /pmc/articles/PMC3334819/ /pubmed/22405205 http://dx.doi.org/10.1016/j.neuron.2011.12.039 Text en © 2012 ELL & Excerpta Medica. This document may be redistributed and reused, subject to certain conditions (http://www.elsevier.com/wps/find/authorsview.authors/supplementalterms1.0) . |
spellingShingle | Article Jeworutzki, Elena López-Hernández, Tania Capdevila-Nortes, Xavier Sirisi, Sònia Bengtsson, Luiza Montolio, Marisol Zifarelli, Giovanni Arnedo, Tanit Müller, Catrin S. Schulte, Uwe Nunes, Virginia Martínez, Albert Jentsch, Thomas J. Gasull, Xavier Pusch, Michael Estévez, Raúl GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title | GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title_full | GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title_fullStr | GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title_full_unstemmed | GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title_short | GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl(−) Channel Auxiliary Subunit |
title_sort | glialcam, a protein defective in a leukodystrophy, serves as a clc-2 cl(−) channel auxiliary subunit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334819/ https://www.ncbi.nlm.nih.gov/pubmed/22405205 http://dx.doi.org/10.1016/j.neuron.2011.12.039 |
work_keys_str_mv | AT jeworutzkielena glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT lopezhernandeztania glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT capdevilanortesxavier glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT sirisisonia glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT bengtssonluiza glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT montoliomarisol glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT zifarelligiovanni glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT arnedotanit glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT mullercatrins glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT schulteuwe glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT nunesvirginia glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT martinezalbert glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT jentschthomasj glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT gasullxavier glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT puschmichael glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit AT estevezraul glialcamaproteindefectiveinaleukodystrophyservesasaclc2clchannelauxiliarysubunit |