Cargando…
The Proline Rich Homeodomain Protein PRH/Hhex Forms Stable Oligomers That Are Highly Resistant to Denaturation
BACKGROUND: Many transcription factors control gene expression by binding to specific DNA sequences at or near the genes that they regulate. However, some transcription factors play more global roles in the control of gene expression by altering the architecture of sections of chromatin or even the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335068/ https://www.ncbi.nlm.nih.gov/pubmed/22540015 http://dx.doi.org/10.1371/journal.pone.0035984 |
Sumario: | BACKGROUND: Many transcription factors control gene expression by binding to specific DNA sequences at or near the genes that they regulate. However, some transcription factors play more global roles in the control of gene expression by altering the architecture of sections of chromatin or even the whole genome. The ability to form oligomeric protein assemblies allows many of these proteins to manipulate extensive segments of DNA or chromatin via the formation of structures such as DNA loops or protein-DNA fibres. PRINCIPAL FINDINGS: Here we show that the proline rich homeodomain protein PRH/Hhex forms predominantly octameric and/or hexadecameric species in solution as well as larger assemblies. We show that these assemblies are highly stable resisting denaturation by temperature and chemical denaturants. CONCLUSION: These data indicate that PRH is functionally and structurally related to the Lrp/AsnC family of proteins, a group of proteins that are known to act globally to control gene expression in bacteria and archaea. |
---|