Cargando…
Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)
Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (seaso...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335082/ https://www.ncbi.nlm.nih.gov/pubmed/22539997 http://dx.doi.org/10.1371/journal.pone.0035723 |
_version_ | 1782230743874797568 |
---|---|
author | Stoeckli, Sibylle Hirschi, Martin Spirig, Christoph Calanca, Pierluigi Rotach, Mathias W. Samietz, Jörg |
author_facet | Stoeckli, Sibylle Hirschi, Martin Spirig, Christoph Calanca, Pierluigi Rotach, Mathias W. Samietz, Jörg |
author_sort | Stoeckli, Sibylle |
collection | PubMed |
description | Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant protection strategies to maintain their sustainability. |
format | Online Article Text |
id | pubmed-3335082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33350822012-04-26 Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) Stoeckli, Sibylle Hirschi, Martin Spirig, Christoph Calanca, Pierluigi Rotach, Mathias W. Samietz, Jörg PLoS One Research Article Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant protection strategies to maintain their sustainability. Public Library of Science 2012-04-23 /pmc/articles/PMC3335082/ /pubmed/22539997 http://dx.doi.org/10.1371/journal.pone.0035723 Text en Stoeckli et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Stoeckli, Sibylle Hirschi, Martin Spirig, Christoph Calanca, Pierluigi Rotach, Mathias W. Samietz, Jörg Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title | Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title_full | Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title_fullStr | Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title_full_unstemmed | Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title_short | Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.) |
title_sort | impact of climate change on voltinism and prospective diapause induction of a global pest insect – cydia pomonella (l.) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335082/ https://www.ncbi.nlm.nih.gov/pubmed/22539997 http://dx.doi.org/10.1371/journal.pone.0035723 |
work_keys_str_mv | AT stoecklisibylle impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal AT hirschimartin impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal AT spirigchristoph impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal AT calancapierluigi impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal AT rotachmathiasw impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal AT samietzjorg impactofclimatechangeonvoltinismandprospectivediapauseinductionofaglobalpestinsectcydiapomonellal |