Cargando…
A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions
Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimen...
Autores principales: | Mukhopadhyay, Anirban, Maulik, Ujjwal, Bandyopadhyay, Sanghamitra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335119/ https://www.ncbi.nlm.nih.gov/pubmed/22539940 http://dx.doi.org/10.1371/journal.pone.0032289 |
Ejemplares similares
-
Analyzing Large Gene Expression and Methylation Data Profiles Using StatBicRM: Statistical Biclustering-Based Rule Mining
por: Maulik, Ujjwal, et al.
Publicado: (2015) -
Incorporating the type and direction information in predicting novel regulatory interactions between HIV-1 and human proteins using a biclustering approach
por: Mukhopadhyay, Anirban, et al.
Publicado: (2014) -
A multiobjective approach for identifying protein complexes and studying their association in multiple disorders
por: Bandyopadhyay, Sanghamitra, et al.
Publicado: (2015) -
Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
por: Maulik, Ujjwal, et al.
Publicado: (2009) -
Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble of Pareto-Optimal Solutions for Gene Marker Identification
por: Mukhopadhyay, Anirban, et al.
Publicado: (2010)