Cargando…
Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous
Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335145/ https://www.ncbi.nlm.nih.gov/pubmed/22539959 http://dx.doi.org/10.1371/journal.pone.0035191 |
_version_ | 1782230754696101888 |
---|---|
author | Casteel, Clare L. Hansen, Allison K. Walling, Linda L. Paine, Timothy D. |
author_facet | Casteel, Clare L. Hansen, Allison K. Walling, Linda L. Paine, Timothy D. |
author_sort | Casteel, Clare L. |
collection | PubMed |
description | Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont “Candidatus Liberibacter psyllaurous” (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant. |
format | Online Article Text |
id | pubmed-3335145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33351452012-04-26 Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous Casteel, Clare L. Hansen, Allison K. Walling, Linda L. Paine, Timothy D. PLoS One Research Article Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont “Candidatus Liberibacter psyllaurous” (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant. Public Library of Science 2012-04-23 /pmc/articles/PMC3335145/ /pubmed/22539959 http://dx.doi.org/10.1371/journal.pone.0035191 Text en Casteel et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Casteel, Clare L. Hansen, Allison K. Walling, Linda L. Paine, Timothy D. Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title | Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title_full | Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title_fullStr | Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title_full_unstemmed | Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title_short | Manipulation of Plant Defense Responses by the Tomato Psyllid (Bactericerca cockerelli) and Its Associated Endosymbiont Candidatus Liberibacter Psyllaurous |
title_sort | manipulation of plant defense responses by the tomato psyllid (bactericerca cockerelli) and its associated endosymbiont candidatus liberibacter psyllaurous |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335145/ https://www.ncbi.nlm.nih.gov/pubmed/22539959 http://dx.doi.org/10.1371/journal.pone.0035191 |
work_keys_str_mv | AT casteelclarel manipulationofplantdefenseresponsesbythetomatopsyllidbactericercacockerellianditsassociatedendosymbiontcandidatusliberibacterpsyllaurous AT hansenallisonk manipulationofplantdefenseresponsesbythetomatopsyllidbactericercacockerellianditsassociatedendosymbiontcandidatusliberibacterpsyllaurous AT wallinglindal manipulationofplantdefenseresponsesbythetomatopsyllidbactericercacockerellianditsassociatedendosymbiontcandidatusliberibacterpsyllaurous AT painetimothyd manipulationofplantdefenseresponsesbythetomatopsyllidbactericercacockerellianditsassociatedendosymbiontcandidatusliberibacterpsyllaurous |