Cargando…
Biomineralizations: insights and prospects from crustaceans
Abstract. For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification proce...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pensoft Publishers
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335408/ https://www.ncbi.nlm.nih.gov/pubmed/22536102 http://dx.doi.org/10.3897/zookeys.176.2318 |
_version_ | 1782230786738487296 |
---|---|
author | Luquet, Gilles |
author_facet | Luquet, Gilles |
author_sort | Luquet, Gilles |
collection | PubMed |
description | Abstract. For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area. |
format | Online Article Text |
id | pubmed-3335408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Pensoft Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-33354082012-04-25 Biomineralizations: insights and prospects from crustaceans Luquet, Gilles Zookeys Article Abstract. For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area. Pensoft Publishers 2012-03-20 /pmc/articles/PMC3335408/ /pubmed/22536102 http://dx.doi.org/10.3897/zookeys.176.2318 Text en Gilles Luquet http://creativecommons.org/licenses/by/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Luquet, Gilles Biomineralizations: insights and prospects from crustaceans |
title | Biomineralizations: insights and prospects from crustaceans |
title_full | Biomineralizations: insights and prospects from crustaceans |
title_fullStr | Biomineralizations: insights and prospects from crustaceans |
title_full_unstemmed | Biomineralizations: insights and prospects from crustaceans |
title_short | Biomineralizations: insights and prospects from crustaceans |
title_sort | biomineralizations: insights and prospects from crustaceans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335408/ https://www.ncbi.nlm.nih.gov/pubmed/22536102 http://dx.doi.org/10.3897/zookeys.176.2318 |
work_keys_str_mv | AT luquetgilles biomineralizationsinsightsandprospectsfromcrustaceans |