Cargando…
Metal-directed, chemically-tunable assembly of one-, two- and three-dimensional crystalline protein arrays
Proteins represent the most sophisticated building blocks available to an organism or the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has been largely inaccessible owing to the chemical and structural heterogenei...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335442/ https://www.ncbi.nlm.nih.gov/pubmed/22522257 http://dx.doi.org/10.1038/nchem.1290 |
Sumario: | Proteins represent the most sophisticated building blocks available to an organism or the laboratory chemist. Yet, in contrast to nearly all other types of molecular building blocks, the designed self-assembly of proteins has been largely inaccessible owing to the chemical and structural heterogeneity of protein surfaces. To circumvent the challenge of programming extensive non-covalent interactions for controlling protein self-assembly, we had previously exploited the directionality and strength of metal coordination interactions to guide the formation of closed, homoligomeric protein assemblies. Here, we extend this strategy to the generation of periodic protein arrays. We show that a monomeric protein with properly oriented coordination motifs on its surface can arrange upon metal binding into one-dimensional nanotubes, and two-or three-dimensional crystalline arrays whose dimensions collectively span nearly the entire nano- and micrometer length scale. The assembly of these arrays is predictably tuned by external stimuli, such as metal concentration and pH. |
---|