Cargando…

The evolution and consequences of snaR family transposition in primates

The small NF90 associated RNA (snaR) family of small noncoding RNAs (ncRNA) appears to have evolved from retrotransposon ancestors at or soon after pivotal stages in primate evolution. snaRs are thought to be derived from a FLAM C-like (free left Alu monomer) element through multiple short insertion...

Descripción completa

Detalles Bibliográficos
Autores principales: Parrott, Andrew M., Mathews, Michael B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337139/
https://www.ncbi.nlm.nih.gov/pubmed/22545241
http://dx.doi.org/10.4161/mge.18478
Descripción
Sumario:The small NF90 associated RNA (snaR) family of small noncoding RNAs (ncRNA) appears to have evolved from retrotransposon ancestors at or soon after pivotal stages in primate evolution. snaRs are thought to be derived from a FLAM C-like (free left Alu monomer) element through multiple short insertion/deletion (indel) and nucleotide (nt) substitution events. Tracing snaR’s complex evolutionary history through primate genomes led to the recent discovery of two novel retrotransposons: the Alu/snaR related (ASR) and catarrhine ancestor of snaR (CAS) elements. ASR elements are present in the genomes of Simiiformes, CAS elements are present in Old World Monkeys and apes, and snaRs are restricted to the African Great Apes (Homininae, including human, gorilla, chimpanzee and bonobo). Unlike their ancestors, snaRs have disseminated by multiple rounds of segmental duplication of a larger encompassing element. This process has produced large tandem gene arrays in humans and possibly precipitated the accelerated evolution of snaR. Furthermore, snaR segmental duplication created a new form of chorionic gonadotropin β subunit (CGβ) gene, recently classified as Type II CGβ, which has altered mRNA tissue expression and can generate a novel short peptide.