Cargando…

Optimization and stabilization of Rho small GTPase proteins for solution NMR studies: The case of Rnd1

Rho GTPases of the Ras superfamily have important roles in regulating the organization of the actin filament system, morphogenesis and migration of cells. Structural details for these proteins are still emerging, and information on their dynamics in solution is much needed to understand the mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Shufen, Buck, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337157/
https://www.ncbi.nlm.nih.gov/pubmed/22545226
http://dx.doi.org/10.4161/sgtp.19257
Descripción
Sumario:Rho GTPases of the Ras superfamily have important roles in regulating the organization of the actin filament system, morphogenesis and migration of cells. Structural details for these proteins are still emerging, and information on their dynamics in solution is much needed to understand the mechanisms underlying their signaling functions. This report reviews conditions for solution NMR studies of Rho GTPases and describes our optimization and stabilization of Rnd1 for such experiments. Rnd1 belongs to the Rnd protein subfamily branch of Rho small GTPases and functions in neurite outgrowth, dendrite development and in axon guidance. However, as we report here, solution NMR studies of this protein are challenging. Multiple methods have been employed to enhance the stability of Rnd1, including by cleavage of an N-terminal His expression tag and by addition of non-hydrolysable GMPPNP (β: γ-imidoguanosine 5'-triphosphate) nucleotide. Further stabilization of Rnd1 against aggregation was achieved through a structure informed point mutation while maintaining its conformation and binding affinity for a partner protein. The NMR spectrum of the optimized protein reveals significant improvement in NMR signal dispersion and intensity. This work paves the way for structural and protein-protein/protein-ligand interaction studies of Rnd1 by solution NMR and also provides a guide for optimization and stabilization of other Rho GTPases.