Cargando…
Annotation analysis for testing drug safety signals using unstructured clinical notes
BACKGROUND: The electronic surveillance for adverse drug events is largely based upon the analysis of coded data from reporting systems. Yet, the vast majority of electronic health data lies embedded within the free text of clinical notes and is not gathered into centralized repositories. With the i...
Autores principales: | LePendu, Paea, Iyer, Srinivasan V, Fairon, Cédrick, Shah, Nigam H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337270/ https://www.ncbi.nlm.nih.gov/pubmed/22541596 http://dx.doi.org/10.1186/2041-1480-3-S1-S5 |
Ejemplares similares
-
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: ( 201) -
Learning Signals of Adverse Drug-Drug Interactions from the Unstructured Text of Electronic Health Records
por: Iyer, Srinivasan V, et al.
Publicado: (2013) -
Analyzing Patterns of Drug Use in Clinical Notes for Patient Safety
por: LePendu, Paea, et al.
Publicado: (2012) -
Network analysis of unstructured EHR data for clinical research
por: Bauer-Mehren, Anna, et al.
Publicado: ( 201) -
Using Temporal Patterns in Medical Records to Discern Adverse Drug Events from Indications
por: Liu, Yi, et al.
Publicado: (2012)