Cargando…
Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies
Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS regression method with a special binary ‘dummy’ y-variable and it is commonly used for classification purposes and biomarker selection in metabolomics studies. Several statistical approaches are currently in use to validate outcomes of PL...
Autores principales: | Szymańska, Ewa, Saccenti, Edoardo, Smilde, Age K., Westerhuis, Johan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337399/ https://www.ncbi.nlm.nih.gov/pubmed/22593721 http://dx.doi.org/10.1007/s11306-011-0330-3 |
Ejemplares similares
-
Statistical validation of megavariate effects in ASCA
por: Vis, Daniel J, et al.
Publicado: (2007) -
Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data
por: Reshetova, Polina, et al.
Publicado: (2014) -
Metabolic network discovery through reverse engineering of metabolome data
por: Çakır, Tunahan, et al.
Publicado: (2009) -
Group-wise ANOVA simultaneous component analysis for designed omics experiments
por: Saccenti, Edoardo, et al.
Publicado: (2018) -
Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data
por: Saccenti, Edoardo, et al.
Publicado: (2011)