Cargando…

Imino Hydrogen Positions in Nucleic Acids from Density Functional Theory Validated by NMR Residual Dipolar Couplings

[Image: see text] Hydrogen atom positions of nucleotide bases in RNA structures solved by X-ray crystallography are commonly derived from heavy-atom coordinates by assuming idealized geometries. In particular, N1–H1 vectors in G and N3–H3 vectors in U are commonly positioned to coincide with the bis...

Descripción completa

Detalles Bibliográficos
Autores principales: Grishaev, Alexander, Ying, Jinfa, Bax, Ad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2012
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337690/
https://www.ncbi.nlm.nih.gov/pubmed/22489834
http://dx.doi.org/10.1021/ja301775j
Descripción
Sumario:[Image: see text] Hydrogen atom positions of nucleotide bases in RNA structures solved by X-ray crystallography are commonly derived from heavy-atom coordinates by assuming idealized geometries. In particular, N1–H1 vectors in G and N3–H3 vectors in U are commonly positioned to coincide with the bisectors of their respective heavy-atom angles. We demonstrate that quantum-mechanical optimization of the hydrogen positions relative to their heavy-atom frames considerably improves the fit of experimental residual dipolar couplings to structural coordinates. The calculations indicate that deviations of the imino N–H vectors in RNA U and G bases result from H-bonding within the base pair and are dominated by the attractive interaction between the H atom and the electron density surrounding the H-bond-acceptor atom. DFT optimization of H atom positions is impractical in structural biology studies. We therefore have developed an empirical relation that predicts imino N–H vector orientations from the heavy-atom coordinates of the base pair. This relation agrees very closely with the DFT results, permitting its routine application in structural studies.