Cargando…
A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing
Cell-type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of 4 knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0, a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337962/ https://www.ncbi.nlm.nih.gov/pubmed/22446880 http://dx.doi.org/10.1038/nn.3078 |
Sumario: | Cell-type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of 4 knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0, and archaerhodopsin Arch-ER2. All 4 transgenes mediate Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent, and inducible nature of our ChR2 mice represents a significant advancement over previous lines, whereas the Arch-ER2 and eNpHR3.0 mice are the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre-driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy. |
---|